fix ch5 typos
This commit is contained in:
@@ -25,7 +25,7 @@ $$
|
||||
|
||||

|
||||
|
||||
具体怎么做呢?这边就需要介绍 `importance sampling` 的概念。
|
||||
具体怎么做呢?这边就需要介绍 `importance sampling(重要性采样)` 的概念。
|
||||
|
||||
假设你有一个 function $f(x)$,你要计算从 p 这个 distribution sample $x$,再把 $x$ 带到 $f$ 里面,得到 $f(x)$。你要该怎么计算这个 $f(x)$ 的期望值?假设你不能对 p 这个distribution 做积分的话,那你可以从 p 这个 distribution 去 sample 一些 data $x^i$。把 $x^i$ 代到 $f(x)$ 里面,然后取它的平均值,就可以近似 $f(x)$ 的期望值。
|
||||
|
||||
@@ -63,13 +63,15 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
$\operatorname{Var}_{x \sim p}[f(x)]$ 和 $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的差别在第一项是不同的, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的第一项多乘了$\frac{p(x)}{q(x)}$,如果$\frac{p(x)}{q(x)}$ 差距很大的话, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$的 variance 就会很大。所以虽然理论上它们的 expectation 一样,也就是说,你只要对 p 这个 distribution sample 够多次,q 这个 distribution sample 够多,你得到的结果会是一样的。但是假设你 sample 的次数不够多,因为它们的 variance 差距是很大的,所以你就有可能得到非常大的差别。
|
||||
$\operatorname{Var}_{x \sim p}[f(x)]$ 和 $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的差别在第一项是不同的, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的第一项多乘了$\frac{p(x)}{q(x)}$,如果 $\frac{p(x)}{q(x)}$ 差距很大的话, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$的 variance 就会很大。所以虽然理论上它们的 expectation 一样,也就是说,你只要对 p 这个 distribution sample 够多次,q 这个 distribution sample 够多,你得到的结果会是一样的。但是假设你 sample 的次数不够多,因为它们的 variance 差距是很大的,所以你就有可能得到非常大的差别。
|
||||
|
||||

|
||||
|
||||
举个例子,当 $p(x)$ 和 $q(x)$ 差距很大的时候,会发生什么样的问题。假设蓝线是 $p(x)$ 的distribution,绿线是 $q(x)$ 的 distribution,红线是 $f(x)$。如果我们要计算$f(x)$的期望值,从 $p(x)$ 这个 distribution 做 sample 的话,那显然 $E_{x \sim p}[f(x)]$ 是负的,因为左边那块区域 $p(x)$ 的概率很高,所以要 sample 的话,都会 sample 到这个地方,而 $f(x)$ 在这个区域是负的, 所以理论上这一项算出来会是负。
|
||||
举个例子,当 $p(x)$ 和 $q(x)$ 差距很大的时候,会发生什么样的问题。
|
||||
|
||||
接下来我们改成从 $q(x)$ 这边做 sample,因为 $q(x)$ 在右边这边的概率比较高,所以如果你 sample 的点不够的话,那你可能都只 sample 到右侧。如果你都只 sample 到右侧的话,你会发现说,算 $E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$这一项,搞不好还应该是正的。你这边 sample 到这些点,然后你去计算它们的 $f(x) \frac{p(x)}{q(x)}$ 都是正的,所以你 sample 到这些点都是正的。 你取期望值以后,也都是正的。为什么会这样,因为你 sample 的次数不够多,因为假设你 sample 次数很少,你只能 sample 到右边这边。左边这边虽然概率很低,但也不是没有可能被 sample 到。假设你今天好不容易 sample 到左边的点,因为左边的点,$p(x)$ 和 $q(x)$ 是差很多的, 这边 $p(x)$ 很小,$q(x)$ 很大。今天 $f(x)$ 好不容易终于 sample 到一个负的,这个负的就会被乘上一个非常大的 weight ,这样就可以平衡掉刚才那边一直 sample 到 positive 的 value 的情况。最终你算出这一项的期望值,终究还是负的。但前提是你要 sample 够多次,这件事情才会发生。但有可能 sample 不够,$E_{x \sim p}[f(x)]$ 跟 $E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 就有可能有很大的差距。这就是 importance sampling 的问题。
|
||||
假设蓝线是 $p(x)$ 的 distribution,绿线是 $q(x)$ 的 distribution,红线是 $f(x)$。如果我们要计算 $f(x)$的期望值,从 $p(x)$ 这个 distribution 做 sample 的话,那显然 $E_{x \sim p}[f(x)]$ 是负的,因为左边那块区域 $p(x)$ 的概率很高,所以要 sample 的话,都会 sample 到这个地方,而 $f(x)$ 在这个区域是负的, 所以理论上这一项算出来会是负。
|
||||
|
||||
接下来我们改成从 $q(x)$ 这边做 sample,因为 $q(x)$ 在右边这边的概率比较高,所以如果你 sample 的点不够的话,那你可能都只 sample 到右侧。如果你都只 sample 到右侧的话,你会发现说,算 $E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$这一项,搞不好还应该是正的。你这边 sample 到这些点,然后你去计算它们的 $f(x) \frac{p(x)}{q(x)}$ 都是正的。你 sample 到这些点都是正的。 你取期望值以后也都是正的,这是因为你 sample 的次数不够多。假设你 sample 次数很少,你只能 sample 到右边这边。左边虽然概率很低,但也不是没有可能被 sample 到。假设你今天好不容易 sample 到左边的点,因为左边的点,$p(x)$ 和 $q(x)$ 是差很多的, 这边 $p(x)$ 很大,$q(x)$ 很小。今天 $f(x)$ 好不容易终于 sample 到一个负的,这个负的就会被乘上一个非常大的 weight ,这样就可以平衡掉刚才那边一直 sample 到正的值的情况。最终你算出这一项的期望值,终究还是负的。但前提是你要 sample 够多次,这件事情才会发生。**但有可能 sample 次数不够多,$E_{x \sim p}[f(x)]$ 跟 $E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 就有可能有很大的差距。这就是 importance sampling 的问题。**
|
||||
|
||||

|
||||
|
||||
|
||||
Reference in New Issue
Block a user