This commit is contained in:
johnjim0816
2021-09-16 15:35:40 +08:00
parent 5085040330
commit 34fcebc4b8
31 changed files with 434 additions and 137 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-09-15 02:19:54
LastEditTime: 2021-09-15 15:34:13
@Discription:
@Environment: python 3.7.7
'''
@@ -19,7 +19,7 @@ import torch
import datetime
from common.utils import save_results, make_dir
from common.plot import plot_rewards
from common.plot import plot_rewards,plot_rewards_cn
from DQN.agent import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
@@ -29,21 +29,21 @@ class DQNConfig:
self.algo = "DQN" # 算法名称
self.env = 'CartPole-v0' # 环境名称
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
'/'+curr_time+'/models/' # 保存模型的路径
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
self.gamma = 0.95
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # capacity of Replay Memory
self.batch_size = 64
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # jian che
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.hidden_dim = 256 # hidden size of net
def env_agent_config(cfg,seed=1):
@@ -55,10 +55,10 @@ def env_agent_config(cfg,seed=1):
return env,agent
def train(cfg, env, agent):
print('Start to train !')
print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
print('开始训练!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录奖励
ma_rewards = [] # 记录滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
@@ -75,19 +75,19 @@ def train(cfg, env, agent):
if (i_ep+1) % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print('Episode:{}/{}, Reward:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
# save ma_rewards
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
print('完成训练')
return rewards, ma_rewards
def eval(cfg,env,agent):
print('Start to eval !')
print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')
print('开始测试!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.eval_eps):
@@ -105,24 +105,23 @@ def eval(cfg,env,agent):
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
print('Complete evaling')
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
print('完成测试')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
# train
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
plot_rewards_cn(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)