This commit is contained in:
johnjim0816
2021-09-16 15:35:40 +08:00
parent 5085040330
commit 34fcebc4b8
31 changed files with 434 additions and 137 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2021-09-15 02:18:56
LastEditTime: 2021-09-15 13:35:36
@Discription:
@Environment: python 3.7.7
'''
@@ -50,7 +50,7 @@ class DQN:
with torch.no_grad():
state = torch.tensor([state], device=self.device, dtype=torch.float32)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item()
action = q_values.max(1)[1].item() # 选择Q值最大的动作
else:
action = random.randrange(self.action_dim)
return action
@@ -61,45 +61,33 @@ class DQN:
action = q_values.max(1)[1].item()
return action
def update(self):
if len(self.memory) < self.batch_size:
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略
return
# 从memory中随机采样transition
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
'''转为张量
例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])'''
# 转为张量
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
1) # 例如tensor([[1],...,[0]])
1)
reward_batch = torch.tensor(
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
reward_batch, device=self.device, dtype=torch.float)
next_state_batch = torch.tensor(
next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(
done_batch), device=self.device)
'''计算当前(s_t,a)对应的Q(s_t, a)'''
'''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])'''
q_values = self.policy_net(state_batch).gather(
dim=1, index=action_batch) # 等价于self.forward
# 计算所有next states的V(s_{t+1})即通过target_net中选取reward最大的对应states
next_q_values = self.target_net(next_state_batch).max(
1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
# 计算 expected_q_value
# 对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
expected_q_values = reward_batch + \
self.gamma * next_q_values * (1-done_batch)
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
# 计算期望的Q值对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
# 优化更新模型
self.optimizer.zero_grad()
loss.backward()
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
# param.grad.data.clamp_(-1, 1)
self.optimizer.step() # 更新模型
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
def save(self, path):
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')