update
This commit is contained in:
@@ -5,13 +5,11 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-30 16:59:19
|
||||
LastEditTime: 2021-04-04 00:26:47
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
from pathlib import Path
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
@@ -21,19 +19,13 @@ import torch
|
||||
import datetime
|
||||
from DQN.agent import DQN
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
from common.utils import save_results,make_dir,del_empty_dir
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(curr_path+"/saved_model/"):
|
||||
os.mkdir(curr_path+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH):
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(curr_path+"/results/"):
|
||||
os.mkdir(curr_path+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
os.mkdir(RESULT_PATH)
|
||||
make_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
del_empty_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
@@ -72,8 +64,7 @@ def train(cfg,env,agent):
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
@@ -87,6 +78,8 @@ if __name__ == "__main__":
|
||||
action_dim = env.action_space.n
|
||||
agent = DQN(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
del_empty_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
152
codes/QLearning/main.ipynb
Normal file
152
codes/QLearning/main.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-31 18:21:00
|
||||
LastEditTime: 2021-03-31 18:14:59
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
@@ -32,14 +32,14 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 |
|
||||
| Hierarchical DQN | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | | |
|
||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A3C | | | |
|
||||
| SAC | | | |
|
||||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| TD3 | [TD3 Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| GAIL | | | |
|
||||
|
||||
|
||||
@@ -15,8 +15,6 @@ The code structure mainly contains several scripts as following:
|
||||
* ```agent.py``` core algorithms, include a python Class with functions(choose action, update)
|
||||
* ```main.py``` main function
|
||||
|
||||
|
||||
|
||||
Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in different algorithms,thus they are put into ```common``` folder。
|
||||
|
||||
## Runnig Environment
|
||||
@@ -28,23 +26,23 @@ run ```main.py``` or ```main.ipynb```
|
||||
|
||||
## Schedule
|
||||
|
||||
| Name | Related materials | Used Envs | Notes |
|
||||
| :----------------------------------------------------------: | :---------------------------------------------------------: | ------------------------------------------------------------ | :----------------------------------------------------------: |
|
||||
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | not well |
|
||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A3C | | | |
|
||||
| SAC | | | |
|
||||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| GAIL | | | |
|
||||
| Name | Related materials | Used Envs | Notes |
|
||||
| :--------------------------------------: | :---------------------------------------------------------: | ------------------------------------- | :------: |
|
||||
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | not well |
|
||||
| [Hierarchical DQN](HierarchicalDQN) | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A3C | | | |
|
||||
| SAC | | | |
|
||||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| GAIL | | | |
|
||||
|
||||
|
||||
## Refs
|
||||
|
||||
@@ -5,28 +5,30 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-07 20:57:11
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-31 14:05:52
|
||||
LastEditTime: 2021-03-31 18:47:28
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
def plot_rewards(rewards,ma_rewards,tag="train",algo = "DQN",path='./'):
|
||||
def plot_rewards(rewards,ma_rewards,tag="train",algo = "DQN",save=True,path='./'):
|
||||
sns.set()
|
||||
plt.title("average learning curve of {}".format(algo))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(rewards,label='rewards')
|
||||
plt.plot(ma_rewards,label='moving average rewards')
|
||||
plt.legend()
|
||||
plt.savefig(path+"rewards_curve_{}".format(tag))
|
||||
if save:
|
||||
plt.savefig(path+"rewards_curve_{}".format(tag))
|
||||
plt.show()
|
||||
|
||||
def plot_losses(losses,algo = "DQN",path='./'):
|
||||
def plot_losses(losses,algo = "DQN",save=True,path='./'):
|
||||
sns.set()
|
||||
plt.title("loss curve of {}".format(algo))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(losses,label='rewards')
|
||||
plt.legend()
|
||||
plt.savefig(path+"losses_curve")
|
||||
if save:
|
||||
plt.savefig(path+"losses_curve")
|
||||
plt.show()
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:02:24
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 16:10:28
|
||||
LastEditTime: 2021-04-03 21:42:13
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -18,4 +18,17 @@ def save_results(rewards,ma_rewards,tag='train',path='./results'):
|
||||
'''
|
||||
np.save(path+'rewards_'+tag+'.npy', rewards)
|
||||
np.save(path+'ma_rewards_'+tag+'.npy', ma_rewards)
|
||||
print('results saved!')
|
||||
print('results saved!')
|
||||
|
||||
def make_dir(*paths):
|
||||
for path in paths:
|
||||
if not os.path.exists(path): # check if exists
|
||||
os.mkdir(path)
|
||||
def del_empty_dir(*paths):
|
||||
'''del_empty_dir delete empty folders unders "paths"
|
||||
'''
|
||||
for path in paths:
|
||||
dirs = os.listdir(path)
|
||||
for dir in dirs:
|
||||
if not os.listdir(os.path.join(path, dir)):
|
||||
os.removedirs(os.path.join(path, dir))
|
||||
19
codes/test.py
Normal file
19
codes/test.py
Normal file
@@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-25 23:25:15
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-26 16:46:52
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
from collections import defaultdict
|
||||
import numpy as np
|
||||
action_dim = 2
|
||||
Q_table = defaultdict(lambda: np.zeros(action_dim))
|
||||
Q_table[str(0)] = 1
|
||||
print(Q_table[str(0)])
|
||||
Q_table[str(21)] = 3
|
||||
print(Q_table[str(21)])
|
||||
Reference in New Issue
Block a user