From 273fdab7c6e6a20b3b0e97cb984a3c27b51bdde1 Mon Sep 17 00:00:00 2001 From: David Young <46375780+yyysjz1997@users.noreply.github.com> Date: Fri, 23 Oct 2020 17:24:53 +0800 Subject: [PATCH] Update chapter5_questions&keywords.md --- docs/chapter5/chapter5_questions&keywords.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/chapter5/chapter5_questions&keywords.md b/docs/chapter5/chapter5_questions&keywords.md index 3e6f8a2..95318b0 100644 --- a/docs/chapter5/chapter5_questions&keywords.md +++ b/docs/chapter5/chapter5_questions&keywords.md @@ -19,11 +19,11 @@ - 使用important sampling时需要注意的问题有哪些。 - 答:我们可以在important sampling中将 $p$ 替换为任意的 $q$,但是本质上需要要求两者的分布不能差的太多,即使我们补偿了不同数据分布的权重 $\frac{p(x)}{q(x)}$ 。 $E_{x \sim p}[f(x)]=E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 当我们对于两者的采样次数都比较多时,最终的结果时一样的,没有影响的。但是通常我们不会取理想的数量的data,所以如果两者的分布相差较大,最后结果的variance差距将会很大。 + 答:我们可以在important sampling中将 $p$ 替换为任意的 $q$,但是本质上需要要求两者的分布不能差的太多,即使我们补偿了不同数据分布的权重 $\frac{p(x)}{q(x)}$ 。 $E_{x \sim p}[f(x)]=E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 当我们对于两者的采样次数都比较多时,最终的结果时一样的,没有影响的。但是通常我们不会取理想的数量的sample data,所以如果两者的分布相差较大,最后结果的variance差距(平方级)将会很大。 - 基于off-policy的importance sampling中的 data 是从 $\theta'$ sample 出来的,从 $\theta$ 换成 $\theta'$ 有什么优势? - 答:使用off-policy的importance sampling后,我们不用$\theta$ 去跟环境做互动,假设有另外一个 policy $\theta'$,它就是另外一个actor。它的工作是他要去做demonstration,$\theta'$ 的工作是要去示范给$\theta$ 看。它去跟环境做互动,告诉 $\theta$ 说,它跟环境做互动会发生什么事。然后,借此来训练$\theta$。我们要训练的是 $\theta$ ,$\theta'$ 只是负责做 demo,负责跟环境做互动,所以 sample 出来的东西跟 $\theta$ 本身是没有关系的。所以你就可以让 $\theta'$ 做互动 sample 一大堆的data,$\theta$ 可以update 参数很多次。然后一直到 $\theta$ train 到一定的程度,update 很多次以后,$\theta'$ 再重新去做 sample,这就是 on-policy 换成 off-policy 的妙用。 + 答:使用off-policy的importance sampling后,我们不用 $\theta$ 去跟环境做互动,假设有另外一个 policy $\theta'$,它就是另外一个actor。它的工作是他要去做demonstration,$\theta'$ 的工作是要去示范给 $\theta$ 看。它去跟环境做互动,告诉 $\theta$ 说,它跟环境做互动会发生什么事。然后,借此来训练$\theta$。我们要训练的是 $\theta$ ,$\theta'$ 只是负责做 demo,负责跟环境做互动,所以 sample 出来的东西跟 $\theta$ 本身是没有关系的。所以你就可以让 $\theta'$ 做互动 sample 一大堆的data,$\theta$ 可以update 参数很多次。然后一直到 $\theta$ train 到一定的程度,update 很多次以后,$\theta'$ 再重新去做 sample,这就是 on-policy 换成 off-policy 的妙用。 - 在本节中PPO中的KL divergence指的是什么?