Update readme.md
This commit is contained in:
@@ -1,22 +1,30 @@
|
|||||||
|
## 说明
|
||||||
|
|
||||||
|
该部分是蘑菇书的扩展内容,整理&总结了强化学习领域的经典论文。主要有DQN类、策略梯度类、模仿学习类、分布式强化学习、多任务强化学习、探索策略、分层强化学习以及其他技巧等方向的论文。后续会配有视频解读(与WhalePaper合作),会陆续上线Datawhale B站公众号。
|
||||||
|
|
||||||
|
每周更新5篇左右的论文,欢迎关注。
|
||||||
|
|
||||||
|
**转发请加上链接&来源(Easy-RL项目)**
|
||||||
|
|
||||||
|
| 类别 | 论文题目 | 原文链接 | 其他链接(视频解读) |
|
||||||
|
| --------------- | ------------------------------------------------------------ | --------------------------------------------- | -------------------- |
|
||||||
|
| DQN | Playing Atari with Deep Reinforcement Learning | https://arxiv.org/abs/1312.5602 | |
|
||||||
|
| | Deep Recurrent Q-Learning for Partially Observable MDPs | https://arxiv.org/abs/1507.06527 | |
|
||||||
|
| | Dueling Network Architectures for Deep Reinforcement Learning (**Dueling DQN**) | https://arxiv.org/abs/1511.06581 | |
|
||||||
|
| | Deep Reinforcement Learning with Double Q-learning (**Double DQN**) | https://arxiv.org/abs/1509.06461 | |
|
||||||
|
| | Prioritized Experience Replay (**PER**) | https://arxiv.org/abs/1511.05952 | |
|
||||||
|
| | Rainbow: Combining Improvements in Deep Reinforcement Learning (**Rainbow**) | https://arxiv.org/abs/1710.02298 | |
|
||||||
|
| Policy gradient | Asynchronous Methods for Deep Reinforcement Learning (**A3C**) | https://arxiv.org/abs/1602.01783 | |
|
||||||
|
| | Trust Region Policy Optimization (**TRPO**) | https://arxiv.org/abs/1502.05477 | |
|
||||||
|
| | High-Dimensional Continuous Control Using Generalized Advantage Estimation (**GAE**) | https://arxiv.org/abs/1506.02438 | |
|
||||||
|
| | Proximal Policy Optimization Algorithms (**PPO**) | https://arxiv.org/abs/1707.06347 | |
|
||||||
|
| | Emergence of Locomotion Behaviours in Rich Environments (**PPO-Penalty**) | https://arxiv.org/abs/1707.02286 | |
|
||||||
|
| | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (**ACKTP**) | https://arxiv.org/abs/1708.05144 | |
|
||||||
|
| | Sample Efficient Actor-Critic with Experience Replay (**ACER**) | https://arxiv.org/abs/1611.01224 | |
|
||||||
|
| | Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with (**SAC**) | https://arxiv.org/abs/1801.01290 | |
|
||||||
|
| | Deterministic Policy Gradient Algorithms (**DPG**) | http://proceedings.mlr.press/v32/silver14.pdf | |
|
||||||
|
| | Continuous Control With Deep Reinforcement Learning (**DDPG**) | https://arxiv.org/abs/1509.02971 | |
|
||||||
|
| | Addressing Function Approximation Error in Actor-Critic Methods (**TD3**) | https://arxiv.org/abs/1802.09477 | |
|
||||||
|
| | A Distributional Perspective on Reinforcement Learning (**C51**) | https://arxiv.org/abs/1707.06887 | |
|
||||||
|
| | | | |
|
||||||
|
|
||||||
| 类别 | 论文题目 | 原文链接 | 其他(视频解读) |
|
|
||||||
| -------- | ------------------------------------------------------------ | --------------------------------------------- | -------------------- |
|
|
||||||
| DQN | Playing Atari with Deep Reinforcement Learning | https://arxiv.org/abs/1312.5602 | |
|
|
||||||
| | Deep Recurrent Q-Learning for Partially Observable MDPs | https://arxiv.org/abs/1507.06527 | |
|
|
||||||
| | Dueling Network Architectures for Deep Reinforcement Learning (**Dueling DQN**) | https://arxiv.org/abs/1511.06581 | |
|
|
||||||
| | Deep Reinforcement Learning with Double Q-learning (**Double DQN**) | https://arxiv.org/abs/1509.06461 | |
|
|
||||||
| | Prioritized Experience Replay (**PER**) | https://arxiv.org/abs/1511.05952 | |
|
|
||||||
| | Rainbow: Combining Improvements in Deep Reinforcement Learning (**Rainbow**) | https://arxiv.org/abs/1710.02298 | |
|
|
||||||
| 策略梯度 | Asynchronous Methods for Deep Reinforcement Learning (**A3C**) | https://arxiv.org/abs/1602.01783 | |
|
|
||||||
| | Trust Region Policy Optimization (**TRPO**) | https://arxiv.org/abs/1502.05477 | |
|
|
||||||
| | High-Dimensional Continuous Control Using Generalized Advantage Estimation (**GAE**) | https://arxiv.org/abs/1506.02438 | |
|
|
||||||
| | Proximal Policy Optimization Algorithms (**PPO**) | https://arxiv.org/abs/1707.06347 | |
|
|
||||||
| | Emergence of Locomotion Behaviours in Rich Environments (**PPO-Penalty**) | https://arxiv.org/abs/1707.02286 | |
|
|
||||||
| | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (**ACKTP**) | https://arxiv.org/abs/1708.05144 | |
|
|
||||||
| | Sample Efficient Actor-Critic with Experience Replay (**ACER**) | https://arxiv.org/abs/1611.01224 | |
|
|
||||||
| | Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with (**SAC**) | https://arxiv.org/abs/1801.01290 | |
|
|
||||||
| | Deterministic Policy Gradient Algorithms (**DPG**) | http://proceedings.mlr.press/v32/silver14.pdf | |
|
|
||||||
| | Continuous Control With Deep Reinforcement Learning (**DDPG**) | https://arxiv.org/abs/1509.02971 | |
|
|
||||||
| | Addressing Function Approximation Error in Actor-Critic Methods (**TD3**) | https://arxiv.org/abs/1802.09477 | |
|
|
||||||
| | A Distributional Perspective on Reinforcement Learning (**C51**) | https://arxiv.org/abs/1707.06887 | |
|
|
||||||
| | | | |
|
|
||||||
|
|||||||
Reference in New Issue
Block a user