Update readme.md

This commit is contained in:
Yiyuan Yang
2022-11-21 19:03:12 +08:00
committed by GitHub
parent 45347e070c
commit 1523bb030d

View File

@@ -4,6 +4,8 @@
每周更新5篇左右的论文欢迎关注。 每周更新5篇左右的论文欢迎关注。
如果在线阅读Markdown文件有问题例如公式编译错误、图片显示较慢等请下载到本地阅读或观看PDF文件夹中的同名文件。
**转发请加上链接&来源[Easy RL项目](https://github.com/datawhalechina/easy-rl)** **转发请加上链接&来源[Easy RL项目](https://github.com/datawhalechina/easy-rl)**
| 类别 | 论文题目 | 原文链接 | 视频解读 | | 类别 | 论文题目 | 原文链接 | 视频解读 |
@@ -22,7 +24,7 @@
| | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (**ACKTP**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Scalable%20trust-region%20method%20for%20deep%20reinforcement%20learning%20using%20Kronecker-factored.md) | https://arxiv.org/abs/1708.05144 | | | | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (**ACKTP**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Scalable%20trust-region%20method%20for%20deep%20reinforcement%20learning%20using%20Kronecker-factored.md) | https://arxiv.org/abs/1708.05144 | |
| | Sample Efficient Actor-Critic with Experience Replay (**ACER**) | https://arxiv.org/abs/1611.01224 | | | | Sample Efficient Actor-Critic with Experience Replay (**ACER**) | https://arxiv.org/abs/1611.01224 | |
| | Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor(**SAC**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Soft%20Actor-Critic_Off-Policy%20Maximum%20Entropy%20Deep%20Reinforcement%20Learning%20with%20a%20Stochastic%20Actor.md) [[PDF格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/PDF/Soft%20Actor-Critic_Off-Policy%20Maximum%20Entropy%20Deep%20Reinforcement%20Learning%20with%20a%20Stochastic%20Actor.pdf) | https://arxiv.org/abs/1801.01290 | | | | Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor(**SAC**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Soft%20Actor-Critic_Off-Policy%20Maximum%20Entropy%20Deep%20Reinforcement%20Learning%20with%20a%20Stochastic%20Actor.md) [[PDF格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/PDF/Soft%20Actor-Critic_Off-Policy%20Maximum%20Entropy%20Deep%20Reinforcement%20Learning%20with%20a%20Stochastic%20Actor.pdf) | https://arxiv.org/abs/1801.01290 | |
| | Deterministic Policy Gradient Algorithms (**DPG**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Deterministic%20Policy%20Gradient%20Algorithms.md) | http://proceedings.mlr.press/v32/silver14.pdf | | | | Deterministic Policy Gradient Algorithms (**DPG**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Deterministic%20Policy%20Gradient%20Algorithms.md) [[PDF格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/PDF/Deterministic%20Policy%20Gradient%20Algorithms.pdf) | http://proceedings.mlr.press/v32/silver14.pdf | |
| | Continuous Control With Deep Reinforcement Learning (**DDPG**) | https://arxiv.org/abs/1509.02971 | | | | Continuous Control With Deep Reinforcement Learning (**DDPG**) | https://arxiv.org/abs/1509.02971 | |
| | Addressing Function Approximation Error in Actor-Critic Methods (**TD3**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Addressing%20Function%20Approximation%20Error%20in%20Actor-Critic%20Methods.md) | https://arxiv.org/abs/1802.09477 | | | | Addressing Function Approximation Error in Actor-Critic Methods (**TD3**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/Addressing%20Function%20Approximation%20Error%20in%20Actor-Critic%20Methods.md) | https://arxiv.org/abs/1802.09477 | |
| | A Distributional Perspective on Reinforcement Learning (**C51**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/A%20Distributional%20Perspective%20on%20Reinforcement%20Learning.md) [[PDF格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/PDF/A%20Distributional%20Perspective%20on%20Reinforcement%20Learning.pdf) | https://arxiv.org/abs/1707.06887 | | | | A Distributional Perspective on Reinforcement Learning (**C51**) [[Markdown格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/A%20Distributional%20Perspective%20on%20Reinforcement%20Learning.md) [[PDF格式]](https://github.com/datawhalechina/easy-rl/blob/master/papers/Policy_gradient/PDF/A%20Distributional%20Perspective%20on%20Reinforcement%20Learning.pdf) | https://arxiv.org/abs/1707.06887 | |