{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tool choice" ] }, { "attachments": { "tool_choice.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4AAAAQ4CAYAAADo08FDAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE8WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSdhZG9iZTpuczptZXRhLyc+CiAgICAgICAgPHJkZjpSREYgeG1sbnM6cmRmPSdodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjJz4KCiAgICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9JycKICAgICAgICB4bWxuczpkYz0naHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8nPgogICAgICAgIDxkYzp0aXRsZT4KICAgICAgICA8cmRmOkFsdD4KICAgICAgICA8cmRmOmxpIHhtbDpsYW5nPSd4LWRlZmF1bHQnPllvdXIgcGFyYWdyYXBoIHRleHQgLSA0PC9yZGY6bGk+CiAgICAgICAgPC9yZGY6QWx0PgogICAgICAgIDwvZGM6dGl0bGU+CiAgICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CgogICAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgICAgICAgeG1sbnM6QXR0cmliPSdodHRwOi8vbnMuYXR0cmlidXRpb24uY29tL2Fkcy8xLjAvJz4KICAgICAgICA8QXR0cmliOkFkcz4KICAgICAgICA8cmRmOlNlcT4KICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9J1Jlc291cmNlJz4KICAgICAgICA8QXR0cmliOkNyZWF0ZWQ+MjAyNC0wNS0xNTwvQXR0cmliOkNyZWF0ZWQ+CiAgICAgICAgPEF0dHJpYjpFeHRJZD5iMzExYzhmNS02YzIyLTQyNTAtYmQzYS1iNjY1MTk3ODRkYzI8L0F0dHJpYjpFeHRJZD4KICAgICAgICA8QXR0cmliOkZiSWQ+NTI1MjY1OTE0MTc5NTgwPC9BdHRyaWI6RmJJZD4KICAgICAgICA8QXR0cmliOlRvdWNoVHlwZT4yPC9BdHRyaWI6VG91Y2hUeXBlPgogICAgICAgIDwvcmRmOmxpPgogICAgICAgIDwvcmRmOlNlcT4KICAgICAgICA8L0F0dHJpYjpBZHM+CiAgICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CgogICAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgICAgICAgeG1sbnM6cGRmPSdodHRwOi8vbnMuYWRvYmUuY29tL3BkZi8xLjMvJz4KICAgICAgICA8cGRmOkF1dGhvcj5Db2x0PC9wZGY6QXV0aG9yPgogICAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgoKICAgICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0nJwogICAgICAgIHhtbG5zOnhtcD0naHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyc+CiAgICAgICAgPHhtcDpDcmVhdG9yVG9vbD5DYW52YSAoUmVuZGVyZXIpPC94bXA6Q3JlYXRvclRvb2w+CiAgICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgICAgICAgCiAgICAgICAgPC9yZGY6UkRGPgogICAgICAgIDwveDp4bXBtZXRhPtt+R9gAAbSaSURBVHic7NnBDYAgAMBAZP9NeegGsgSJsbmboP9ez73eAQAAAAAAAMDvza8DAAAAAAAAADjDAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACDCAAYAAAAAAACIMIABAAAAAAAAIgxgAAAAAAAAgAgDGAAAAAAAACBiAwAA///s3X9s1PUdx/E39ORKS21QpwXGkMx/hgobzjnYMkWjAk4McSMQhyASsmUxmZtxWzIztxmXbYREgiD/OV3YP2NL9gMTxWW9qy2LtMUEKA5mg5XMOCrQO0qhv/aHkwhKoO1xX+76eCT9p+33e6+kaf/o8+5zAjAAAAAAAABAmRCAAQAAAAAAAMqEAAwAAAAAAABQJgRgAAAAAAAAgDIhAAMAAAAAAACUCQEYAAAAAAAAoEwIwAAAAAAAAABlQgAGAAAAAAAAKBMCMAAAAAAAAECZEIABAAAAAAAAyoQADAAAAAAAAFAmBGAAAAAAAACAMiEAAwAAAAAAAJQJARgAAAAAAACgTAjAAAAAAAAAAGVCAAYAAAAAAAAoEwIwAAAAAAAAQJlIJT0AgA/k88ejsakpWlpao6+vLyIiJk+eHKseWpHwMi5l/f390dzcEo1NOyKfz5/+/I9/9HhUVFQkuAwAAAAAgCQIwAAJ6u3tjZ07myOTyUZL667o7e094+u5XC6hZVzq2tr2RX0mG42NTWeE3w8NDAwIwAAAAAAAo5AADFBkg4ODsWfP3qivz0TTjn9Gd3d30pMoER3vvBOZ+mxkGxrivff+m/QcOG3//gPR3t4eR44ejeqqqrimri5mzbwxxo0bl/Q0AAAAABh1BGCAIjl48GDU12cj2/BadHZ2Jj2HEvH++0cim22ITLYh2tvbk54Dpw0MDMT27a/GH7b+MQ4f/vjftHQ6Hbfe+rVYtnRJ1NbWJrAQAAAAAEYnARjgIjp8uDMy2WxkMtl4++2OpOdQIrpPnIgdTTsik2mI3Xv2xMDAQNKT4Ay5XC5+9eu1sXdv2zm/5+TJk/Hyy69EY2NT/PDxx+L662cUcSEAAAAAjF4CMECB5fPHo7GpKbLZhti7ty0GBweTnkQJ6O/vj+bmlqjPZKO5uSVOnTqV9CT4RD09PfGTJ56Mjo4Le1JLPp+Pn/38qXjyp0/EjBmfu8jrAAAAAAABGKAAent7Y+fO5shkstHSuit6e3uTnkSJaGvbF/WZbDQ2NkU+n096DpzXxk2bLzj+fqivry9+s3ZdrH9mXdTU1FykZQAAAABAhAAMUBBr166L13c2Jz2DEvPnv/w1nn/+haRnwAXbv/9ANDS8Nqxrjx07Flu3/ilWrnywwKsAAAAAgI8SgItsw4aN0XPyZNIzSt7Dq1bGxIkTk54Bp/V7j1aGob+/P+kJMCR/2/bSiK5/ZfursXz5A1FRUVGgRQAAAADA2QTgIhocHIx/1GdiQCgasUWLvi4AA0ARDQ4ORmvrrhHd48SJE7F7956YNWtmgVYBAAAAAGcbm/SA0aS7u1v8LZCuY11JT4AzfOfba2LhgvmRTqeTnkIJWbBgfqx4cLkntFASurq6IpfLjfg+hw4dKsAaAAAAAOBcBOAi6irAP035QC6fT3oCnOHKK6+M1atXxXObNsTixfdF1fjxSU+iBFSm03HffffGc5s2xJo1q+Oaq69OehKcU1dXYZ58dfTosYLcBwAAAAD4ZAJwEeVzomWh5Ar0T2gotNra2lj+rQdi8+aNsXTpkqipqUl6EiXgsssui/l33xXPPrs+HnnkuzFlypSkJ8HHVFdXF+Q+EyYU5j4AAAAAwCcTgIuoEMcm8oGcmM4lrrq6OpZ88xuxefPGWLlieVxxhSN+Ob+xY8fGvNtujfXPrIvHfvBoTJ8+PelJcFptbW2MGzduxPf5lFe6AwAAAMBFlUp6wGhSyGOLU6lUTJ06NSZPqovKysqoHF8ZlZWVkU6nY0yMOe/1r7++M/61f/+QHnPatGnx1a/MvaDv7evrixM9PdHz/48jR45Ee3t75PPHh/SY59KV8wpgSkNlOh2LFt0bCxcuiO2v/j22bPl9wX4PKF9jxoyJuXPnxNy5c6KlpTV++8LvoqOjI+lZjHIVFRVxww3XR0tL64juMWvmjQVcBQAAAACcTQAuopEeAX355TWxYP78uOmm2XHttdMilRr+j6+zs3PIAfgzUz8d99+/eNiPGRHxn3ffjba2fbFt20vx1lvtw76PVwBTalKpVMy/+67I1Gdj35tvJj2HEjJ79heirW2fAMwl4Y7b540oAN9yy5eiqqqqgIsAAAAAgLMJwEU03COgq8aPj2XLlsadd95RkKMXkzSpri4m1dXF7fNui11vvBEvvrgl2tuHHoIdpw0AxTdnzpfjuus+GwcO/HvI16ZSqVi2dMlFWAUAAAAAfJT3AC6i/DCOgL7qqqvi6aefinvuWVDy8fdsn581K3759C/i5pu/OORrBWAASMb3H/1eTJgwYcjXPbzqoZgyZcpFWAQAAAAAfNT/AAAA///s3XlclNUeBvBnQBQG0AFFAWV3AVRwSXNhcy+XzO3mWi5t916v5lL5qdyqq3XdrcxQb6VpeisrcUFcAXdlSywRRBCLFEWYAQYYZub+0bUuLsz7DvO+A/F8/6rhnPc8Hsejn/nNOYcFYBmJLVp6e3vhX+8vg7e3l0SJrK9x48ZY8PqrGDJkkKh+PAKaiIjIOtzdW2Hxorfg4uIiqL1CocDU56aI/rueiIiIiIiIiIiIzMMCsIw0InYAOzg44PXX5kOlUkmYqG5QKBR44fkZCAoKFNyHO4CJiIisJyDAHytXvIfIyAgoFIpHtvPz88XSJYvw1FMjZMtGRERERERERETU0PEOYBmVlpYKbvvSi8/Dw8NDwjR1i42NDea8Mhtz581HSYnpeaqqqoJWq4WDg4MM6YiIiOh+Li4umD1rJiZNHI/Tp88iJycHRcXFUDo4oFWrVnisR3d0aN++xgIxERERERERERERWR4LwDIqEXhscVRUJCIiwiVOU/e0aNEcf335JaxYuVpQe7VazQIwERGRlbVo0QIjRgyzdgwiIiIiIiIiIiL6Hx4BLSMhR0A7Ojpi6nNTZEhTN/Xu3QuhoSGC2vIeYCIiIiIiIiIiIiIiIqLqWACWidFoFHQE9Ngxo9G0aVMZEtVd06Y+J+i4SLVaLUMaIiIiIiIiIiIiIiIiovqDBWCZlJaWwmg01tjG1dUVQ4c+IVOiusvb2wthYX1NttNoNDKkISIiIiIiIiIiIiIiIqo/WACWiZBi5dixo2FnZydDmrpv/DPjYGNT89tTrWYBmIiIiIiIiIiIiIiIiOj/sQAsE1P31bq6umDggP4ypan7PDw80Lt3rxrbcAcwERERERERERERERERUXUsAMvEVLHyqadGoFGjRjKlqR/GjB5V413AahaAiYiIiIiIiIiIiIiIiKphAVgmJSWP3gHs5OSIwYMHyZimfvD19UFoSMgjf84dwERERERERERERERERETVsQAsk5qKlUOGDIZ9kyYypqk/Ro4c8cifsQBMREREREREREREREREVB3PHJaJ5hE7gO3s7DBs6FCZ09QfoaEh8PHxQW5u7gM/M3WvstyMRiNu3bqFvLwbuFVQAK1WC22ZFuXl5bBrbAd7e3s42NvDyckJnp6e8PT0QNOmTa0d2+o4byS1goIC5OZeR2FhIcr+9/4q05bB1rYRHJVKKJVKOCgd4KhUolWrVvDyagNbW1trx65zjEYj8vJuID8/H2q1BpoSDTQaDQwGA5ydneHs5AxnZye4ubkhIMAfNjYN6ztmXMuq02q1OH3mLLIys35/7bHHuqNbt65WTGUZarUG169fx683b/6+nmjLtDAYDFAqlVA6/rauOCqVcHFxga+vD+zt7a0dWxIajQZ5N27gl59/QWlpGcq0ZSgrK4NCYQMHe3vY29vD2dkJ7u7u8PT0gIuLS43XexARERERERERkWWwACyTRxUrw8PDoFI1kzlN/TJ8+FB89NHHD7xu7R3Aer0eGRlXkJqahh8uXkROTi4qKytFPUOpVKJdu7bo1KkjQjp3bhBFE84bSclgMCAj4wqSkpJxMT0deXk3UF5eLuoZdnZ28PJqA19fX7RtG4DevR5Hs2YNc52+fj0Pp8+cQcblK8jMykJpaamgfvb29ggM7IDOnTohLKwP3NzcJE4qP65lD9Lr9UhJSUV8QiIuXEhCRUVFtZ+rXFT1sgCcd+MGkpNSkJqWhpycXBQXF4vqr1Ao4O7uDj8/X/j7+6Fnjx5o06a1JFmldvv2bSQnpyAlJRWXM66IngtHR0cEBnZAx47B6N69G7zatJEoKRERERERERFRw8YCsEwedQfwiOHDZE5S/0SEh2Hbtu1Qq9XVXrdWATg7+xqOHD2KxMQTKCkRVgx5lLKyMqSl/YC0tB+wHV9CpVIhPLwvoiIj4efna4m4dQbnjaSUmZmF2NiDOHf+guAi5aPodDpkZ19DdvY1HD16DFu2fIqQkM6IjAhHz8d7/umP7C8pKUVi4gkcO34cWVlXzXpGeXk5UlPTkJqahi937kJUVCTGjhmNli3rfyGYa9mDrmRmIj4+ASdPnn7g7+r66vbt2zgYdwgJCSdQUFBQq2cZjUbk5+cjPz8fp06dxhdf7IC/vx8iIsIRER4GlUplodTSqKysRELiCRw8eAhXr5q3JtxTWlqKpKRkJCUlY+vWL+Dv74fIiAgMGTIIjRs3tlBiIiIiIiIiIiJiAVgmJQ/ZARwS0hk+Pt5WSFO/2NnZYcjgQfjq62+qva7T6VBeUSFbMebChSTs+s/Xtf7wsyZFRUWIidmHmJh9aNs2AOPGjUWPx7pLNp4cOG8kFaPRiPj4BOzbHyvp++versaUlFQ4Oztj4oTxGDx44J/uGNMyrRZ7vo9BzN590Gq1FntuVVUVDh8+gmPHjuPpkU9h4sTx9XLuuJZVl5+fj4SEE0hISET+r79aO47F/PjTT/j++xgkJSXDYDBINs69L5ls27YdQ4c+gWf+Mg5KpVKy8cxRVlaG3bu/Q+zBOJSVlUkyxr152BOzF5MnTUBERHi9XB+IiIiIiIiIiOoaFoBl8rA7gLn7V7gnnhiMb7/7HlVVVdVeL9FoJC8AX7yYju3bv8SVzExJx7lfVtZVLF/+PgIC/DF50kSEhobIOn5tcd5ISikpqdi67Qvk5l6XdVyNRoNPojfhYFwcnn9+OoKDgmQdXwoGgwF7YvZi9+7vHnlahSXo9Xp8s/tb3LhxA3PmzK43u/24lv1BrdbgxMmTSEhIxJUr8s6H1H7++Wds3bYd589fkHVcvV6PmJh9SEw8gYkTJ2BA/35WL4Dq9Xrs3x+Lr7/ZLdtpK3fu3MG69R9i3/4DmD5tKgIDO8gyLhERERERERHRnxULwDIpLa3+obqnp0e9vAfPWlxcXNC71+NIPHGy2uvFxWq0aNFCkjFLS0vx6WdbcfToMUmeL9TVq9lY+va7iIqKxLSpz8LZ2dmqeUzhvJGUCgvv4qMNHyMlJdWqOXJycrFw4RK88MIMPDFksFWz1MbNmzexdt0HyMi4ItuYZ8+dx5tvLcLiRQvh5OQo27hicS37jU6nw9mz5xCfkIjU1DTo9XpZx5eaTqfDF9t3YP/+WKv+2oqKirFhw0ZcSr+EmTP/BltbW6vkuHHjZ6xdtx7Z2desMn5W1lW88eZCDBzQHy+99ILV5oGIiIiIiIiIqL5jAVgmqmYq2DWy+/3/R44cYfUdHvXNiBHDkZOTW+21+3cEW0pycgo+2rARd+/eleT55jh+PB7JySl4ZfY/0KVLqLXjPBTnjaR06tRpbPxkk6S7VMUwGo2Ijt4MjVqDcePGWDuOaAkJiYiO3owyCx73LNTVq9nY+Ek05s+bI/vYQjT0tcxoNOLixXTExyfgzNlzFj0SvC7Jzc3F6jXrkZeXZ+0ov4tPSERJaSlee3Ue7OzsTHewoP0HYrF16xeorKyUddyHOXzkKArv3sXrr82XfR6IiIiIiIiIiP4MWACWybJl71g7Qr3Xtm0A1q1bLfk4u7/9Dtu3fwmj0Siqn0KhgHurVvDy9kKzZk1/v8uvRFMCtVqNnNzrKCgoqFU2tVqNd/+5HFMmT8LIkSNq9SxL47yRVPR6PTZt2oK4Q4dF9VMoFAgI8Ie/nx+8vb3QrFkzODo6wmAwoKi4GMVFxcjJyUFKalqtispf7twFhY0CY8eMNvsZcirTahEdvRkJCYlWzXHq1Gkc694N/aIirZrjflzLgPmvLsC1a9bZASqXQ4eOYPOWf0On04nq5+Hujnbt28HH2xstWjSHUqlEo0aNoFarUVRUjPxff0VKSipu3rxpdrakpGQsW/4+Fi18U5YvCxoMBkRv2oK4uEOC+ygUCnQMDkZwcBDcWrrBrUULuLm1QJVej7uFd3H37l0UFt7FxfR0pKdfMusLe8nJKVi69F288cbrde5+ZCIiIiIiIiKiuo4FYKL/qaqqwrp1H+DkqdOC+ygUCoSGhiAsrC969uhh8jhTtVqNc+fOIyHxBC5d+lF0gQH47YPaz7duQ15eHv7+979afSc5542kpNVqsWLFaqSmpQnu07KlGyIjI9AvKgru7q1MtjcYDEhPv4QdO3aafc/rrl1foXu3rvDz8zOrv1wyMq5g7dr1uHnrlrWjAAA2b/43OnfqKNlR/mJwLftDXdllL5UdO3bi6292C26vVCrRt29v9O/XDx06tBfUJy8vD9/s/g6JiSfM+n1OS/sBsbFxePLJIaL7ilFeXo6Vq9YgOTlFUPuWLd3Qr18U+veLgpub20PbeLVp8/t/jxo1EqWlpTh77jwOHoxDZmaWqHw//vQT3lq4GIsXvYVmzZqJ6ktERERERERE1JCxAEyE3z74f+/9FYI/AAWAbt26YsrkifDx8RHcp2nTphg4cAAGDhyA3Nzr2LlzF86dv2DWh8NHjx2HXq/HrFkzrVbM5LyRlIqLi/H2O//EtWs5gtp7e3th+rSp6Ny5k6jfWxsbG4SEdEZISGccPx6PT6I3o6KiQlRWvV6P9R9swMoV79XZOytPnDiJ9R98JNnR+ebQarXYu3c/pk591qo5uJY1DEajEevXf4h4gbvfnZ2dMWXKJERGhIs+htjLywuvzP4Hhj75BNasXW/WjuBt275At25d0KqV6S+ymEOn02HZ8veRnn7JZFsbGxuMGDEMEyeMFz0Xjo6O6N8vCv2iIhEbG4ft23eIOno+JycXq1avxdIli/heJyIiIiIiIiISyHbBgteWWDsEyS8pKRlZV6+K6uPj7Y3evXtJlMh6dDod3nt/BVJSUgW1t7W1xbNTJuPFF2ZApVKZPa5K1QxhYX0RFBiIi+mXzLpjMTf3Om7dKsDjj/c0O4e5OG/mOXLkGG7fuSO4ffPmrhg0cICEieqmsrIyLF7y9gP3fj+MjY0NRj09EnPnvgIPD49aFQh8fX0RHBSEM2fOQieyUFpcXAxXF1e0bRtg9viPcvFiOn766bKoPuPGjvm9GH3gwEFs+HgjDAaDoL5NmzaFn58vgoKCEBwUiM6dO6FDh/bw8faGh6cH7JvYo6S0FHq9XuSv5EE///ILhg8farXCOdeyB3m1aYObN2+JWquE6NSpIzp2DLboM8X4aMNGHD8eL6htj8e6Y+HCNxAcHFSr92bz5s3Rp3dvJKekQK3WiOpbpdejqKgYfST4t5fBYMDKVWsEve9bt26NN954HQP696vVXCgUCrRr1xZRUVG4nJGBO3cKBfe9dasATk5OaN++ndnjExERERERERE1JNwBTA3euvUfCv7g39XVBfPmzkFQUKDFxg8J6Yw1q1di9Zq1SE0VfsztPcePxyOwQ3sMHjzIYpmE4LyRVCorK/HuP5cLKv56eHhg9uyZaN/OckWB4OAgzJs3B++8u0x034TERAwZUrfeU7t2fYVd//mqxjaOjo4IDQ1Bt25d0a1rV6hUpo9aNRgMuHYtB0eOHkN8fIJZBUzgt+OGExNPoH//fmb1ry2uZQ/q0iUUXbqE4uLFdHz9zW5cvJhusWdby6effY6jR4+ZbKd0cMD0GdPQv1+UxcZ2dXXB20sXY9bsuaKP175wIQlarRYODg4WywMA0dGbce7ceZPtAgL8sWTxQjg61ny8uRiuri5YtPBNLF7yNq5ezRbcb/v2L9G1axe09vS0WBYiIiIiIiIioj8rG2sHILKm/3z1NU4JvO9RpVLhX+8vt+gH//c4OTnizTcWoF9UpFn9P/1sK/Ly8iyc6tE4bySlNWvX4/LlDJPtWnt6Yvmydyxa/L2na9cuGDigv+h+ly9noKCgwOJ5zGE0GhEdvfmRxV9nZ2c89dQIvPvOUnz+2RbMnzcH/ftFCSr+Ar/tvA4I8MeLL8zApuiP0adPb7OzHjp8xOy+tcG1rGadO3fC0iWLsGzZO+jatYvFny+XvXv3ISZmn8l29k2aYOHCNy1a/L1HpVJhxoxpovtVVFTgzNlzFs0SH5+AuEOHTbbz8/PD4kWWLf7eo1QqsXjRW/Dx8Rbcp6KiAuvXfyj4JAMiIiIiIiIiooaMBWBqsM6eO49du2reFXePra0t5s+fA1dXV8ny2NraYubMv6Fnzx6i+1ZUVGDV6rXQ6XQSJKuO80ZS2rMnBmcFFDtatnTDkiUL0bRpU8myTJkySfRdl0ajEWfOWLZYY65Vq9ci9mDcA6+7ublh+vSp2BT9MaY+NwXBwUGwsandPweUSiXmz5uDCROeMat/VtZV2f8cci0TLrBDByx86w2s+Nd76NmzR726h/XKlUxs3bbdZDs7Ozu8/vqr6NChvWRZIiPCERDgL7rfmTNnLZbhxo2f8cknm0y2a+3piaVLFsLJyfLF33ucnJwwd85sUcdKZ2Zm4cCBg5JlIiIiIiIiIiL6s2ABmBqk4uJibNiwEUajUVD7qc89i+CgIIlT/XY/3qxZM8063vD69Tx8+tlWCVL9gfNGUrqckYFtX+ww2U6lUmHx4oVo3ry5pHmcnZ3Nuvf815u/SpBGvPPnL1T7f29vL8yeNRMfb/gAw4cNRePGjS0+5rixY9Cr1+Oi++n1ely7lmPxPI/Ctcw8AQH+WPD6q1i9akWtdnzLRaPRYOWqNagycZ+3ra0t5s59BaGhIZJnGmLGUd03b960yNhGoxHr1n+A8oqKGtvZ2trilVf+AScnJ4uMWxMvLy8MGzZUVJ/9B2IF/9klIiIiIiIiImqoWACmBmnjxmhoNBpBbXv37oVhw56UONEflA4OWLDgVbPu+4uNPYizAu70MxfnjaRSWVmJdWs/gF6vr7GdQqHAggWvwsPdXZZc5hzJW3inUIIk5mvcuDGmTJmENatXIjIyota7fU35+99ehn2TJqL7XcnMlCDNw3Etqx0fH2/89eUXJR+ntj6J3ozbt2+bbDdp0gQ8bsbOa3OEhYeJPlmgsPCuRcY+EHtQ0J27Y8eMRkBAgEXGFOKZv4wVtbs+Pz/frPuyiYiIiIiIiIgaEhaAqcE5ceKk4A/IbW1tMXnyRIkTPah169aYNWumWX23bPnU5G4nc3DeSEq7dn2Fm7dumWz35BNDJLnz91E6dGgvumB6p7DuFICDg4KwetUKjHp6pGzH9jo6OiIiIlx0v8zMLAnSPIhrWcOQnJwi6H5nPz9fPDViuOR57rFv0gS+vj6i+pSUlKCysrJW4xYVFWPHjp0m2/n5+WLs2NG1GkssBwcHPPnkEFF9DsTyGGgiIiIiIiIiopqwAEwNSlVVlaAjZu8JC+sr207D+z3es4dZd0Hevn0bcXGHLJqF80ZSun49D3ti9pps5+rqgomTJsiQ6A/29vbw8mojqo9OVzeKbzOmT8M77yyBp6eH7GMPGjRQdJ8bN36WIEl1XMsaBp1Oh02b/22ynUKhwMsvvSj5rvj7tWvbVnSf2t7vvHPnLpSVlZlsN3HCeFF38lpKVGSEqC+pJCUl49atAgkTERERERERERHVbywAU4Oy/0AsCgqEfWBoY2ODcWPHSJyoZhMnjDdr197X33xb691C/4/zRlL69LPPTR79DADTp02F0oxjcWurZcuWotq7u7eSKIk4gwcPlG3X7/38/f1EHwMtpDhVW1zLGobv98QIujd3yJDBaNdOfDG2tlq1ErdGODs7w9HR0ezxCgsLcex4vMl2Pj7e6N69m9nj1Ebz5s3RqVNHwe2NRiMOHT4sYSIiIiIiIiIiovqNBWBqMMq0Wuze/a3g9n379rHKzrn/5+3thbCwvqL7FRUVISEh0SIZOG8kpcsZGUhL+8Fku6CgQPTp01uGRA9yEll4sdaO0bpEoVDAR+Qxt6WlpRKl+Q3XsoZBq9Vizx7TJwrY29tjsswnCtzj6CRuTantl0p27/5O0A7iUU+PrNU4tRUu8r1+6dKPEiUhIiIiIiIiIqr/WACmBuPI4aNQqzWC2/eLipQwjXDjx//FrOMY4w5ZZmcM542ktGvXV4LaDR48SOIkj+bo5CSqfVBQoERJ6hevNuKOzpZ6BzDXsoZh3/4DKCkpMdkurG8fKJVKGRI9SOyXSgIDO5g9VklJCQ4fOWqynYuLi1lfNrCkwEBxa2d29jVBp0cQERERERERETVELABTg2A0GhF7ME5we3t7e1FHEUrJw90dEeFhovtlZV1Fdva1Wo3NeSMpZWZmCdr96+TkhD69e8mQ6OEaiSi+BQT4o0ePxyRMU3+I3eVoMBhQXl4uSRauZQ2DTqdDTMw+QW2t+aWSRo0aCW5r36QJRj39tNljxccnCjoOvMdj3WW/C/l+rVt7ijo6vrKyElezsyVMRERERERERERUf7EATA1Camoa8vPzBbcPDQ0R9QGt1CKjIszqF5+QUKtxOW8kpYNxhwS1i4wMh52dncRpaq9Ro0Z4dspka8eoM8zZXSnVMdBcyxqGkydPQaMxvcvb19cHbdsGyJCo9kaPGQWVqpnZ/Y8eOy6oXV344opCoYC3j7eoPhmXr0iUhoiIiIiIiIiofvsvAAAA///s3XtsVPeVwPFzDeMxZhiwY2MwxtgEAwkGAhjYkAT6R9pt89hdtdmqf6y2//YZqVWr9r9K2U2iqoqqXa3y2CSNVps2TbNVtV0ppQGSEhIeBmznAdjGNnbw+B3q54wHe7j7hzcZgrqae67n57n+zffzX8g53JMDOkH38PtdFsDIC0eOHlPF723YY6gSf7bX18vKlfoXwOfONc3rufQNpiQSCTn57klPsZ+//37D1cxfOByWH//oh7J9e32uSwmM4mX6BXAqdcNAJcyyfOHlqmORxTFTRES++vePyCNf+bLv/J6eHrlyJfMp8KJwWHbs2O77OdlUU1Ojim9tazNTCAAAAAAAwCLHAhjWm5mZkZbmFs/xjuNIQ8Be/juOI/v37VXn9ff3S1+f91NvN6Nv/voGb06ceEemk8mMcWvXrpXq6vULUJF/d955hzzx+GOye/euXJcSKEuWBOOPGMyy/Jhlsb4+uXjxkqfY/fv3Ga5mfioqKuSHP/i+fO1rX53Xz3Py1GlPcVvv2BqYWxZKS0tU8d1Xus0UAgAAAAAAsMgF535DwJDm5hZPi6ZPlJeXSTQaNViRPwcO3C1vHDmqzmtqapLKygfVefTNX9/gzcmT3hYTm+s2Ga4ks3vvvef/XUKvKlkld+3cucAVQYNZlh+z7OS7pzzFlZWVqZeM2VZTUyOPfvfbf/HfhQoLZf++vVm5gryl5T1PcdXrg/OXbLRXx497uPIbAAAAAAAgH7EAhvUaG8+q4isrKw1VMj/19dskGo3K+Pi4Kq/9coev59E3f31DZvFEQi5e8nZSb8uWzYaryWzjxlrZuLE212XAJ2ZZfsyy8+e9XXe9eXOd4UoyKy0tkc997pDRZ0xMTEhHR6en2KqqdUZr0dAugOPxuLiuK47jGKoIAAAAAABgcQrG/YyAQR98eEEVX1VVZaiS+SkoKPC1DOvs7PL1PPrmr2/IrKW5RWZnZz3FBmEBjMWNWWb/LBsbG5PLHd4W3UFYAC+ElvfeF9d1PcVWrQ/O7/nlygWw67oyNTVlqBoAAAAAAIDFixPAsNro6KgMDw+rcqrWBfP0l4hIbU2NnD17TpUzMDAgk5NTEoks95xD3/z1Dd40NTV7iisKh2XDhg2Gq4HNmGX5Mcuamls8Lzu3btliuJpguNx+2XPsOyfelfPnvJ2gNm1waEidMzE5KZFIxEA1AAAAAAAAixcLYFitra1dnROkkzC3qqnRL8Nc15VYLKY6OUbf/PUN3rRf9raYqFpfJQUFXFQB/5hl+THL2tu9/zrX1taYKiNQuq5c8Rz7+h8OG6zEvMmJSZE1ua4CAAAAAAAgWHizDqu1K07AfKJybYBPf9XW+MrTnoCjb3O0fUNmiURCYrE+T7HRaNRwNbAds2yO7bOso8PbNddF4bCEQiHD1QRDd3dPrktYMBMTE7kuAQAAAAAAIHBYAMNqvb296pwgX5NZUVEhxcuWqfOGh0dU8fRtjrZvyKyzs8vzVa1c6Yn5YpbNsXmWpVIp+eijjzzFRlbkx0wZGBiUeDye6zIWTCqVynUJAAAAAAAAgcMCGFYbUr70XrJkiSxdGuyb0aurq9U5wyO6PtC3Odq+IbPu7m7PsZHlwV3EYXFgls2xeZZdvdorMzMznmKX58lMGRgcyHUJAAAAAAAAyDEWwLCa9trLoqIiQ5Vkz8pVK9U5CeVJIPo2R9s3ZDY4NOQ5lhPAmC9m2RybZ9ng4KDn2HyZKSMjH+e6BAAAAAAAAOQYC2BYa3JySn0F4mJ4+b+8uFidk7x+3XMsfUvT9A3eaK6izZfrWmEGsyzN5lmmWfLny60CH7MABgAAAAAAyHvBvucQmIfx8XF1TlE4bKCS7Cr28QI7mUx6jqVvaZq+wRvNssYRx2AlsB2zLM3mWTY0pDjl7eTHTBlRXPn9wANfkq//4z8YrMa8oF/bDgAAAAAAkAu8MYG1kslpdU64KPgv//2c/vL6fUQR+nYzTd/gzejomOdY7elN4GbMsjSbZ9mfR0c9xybiCYOVBMeUYnZOJxISCoUMVgMAAAAAAIBc4ApoWCuZ1F95OTs7a6CS7Cr28fJf83KXvqXxUjz7ktPel3JTU1MGK4HtmGVpNs8yzenmqXh+zJTriiu/JyYnDVYCAAAAAACAXGEBDGtNKxZNn4gvgtNBxcv1L//DimtN6Vuapm/wRvMtUhbAmA9mWZrNs+y6YtEfn8qPWwU0C2DmLAAAAAAAgJ1YAMNafk5yLYYrZ/18wVDz8p++pdm8NMmFVColqVTKc7zmGlPgVsyyNJtnWfI6J4BvpVmKT3ICGAAAAAAAwEosgGEtPy+8E4mEuK5roJrs8XOqrUjxXUv6lqbpGzLTLH9F8ue0HsxglqXZPMtmZxV/qSRPZkrqxg3PsfnSEwAAAAAAgHzDAhjWCvt44e26riR8vFxfSImEvr6SkhLPsfQtTdM3ZBYKhcRxvJ9fHB0bNVgNbMcsS7N5loXDhZ5jU6lUXpx4DRd678n4+LjcUCyMAQAAAAAAsDiwAIa1NC9Abxb0U4d+Tn+tLi/3HEvf0jR9Q2aO40goFPIcH4v1yczMjMGKYDNmWZrNs6wwpPt17uzsMlRJcBQqfu/PzMxIT0+PwWoAAAAAAACQCyyAYa0VK1b4yhseHs5yJdmVSCTUORUVFZ5j6Vuapm/wRrOYSKVS0tV1xWA1sBmzLM3mWaY5ASwi0tHRaaiS4ND2pLW13VAlAAAAAAAAyBUWwLBWSUmJLF26VJ13pbs7+8VkkZ/TXxUVqz3H0rc0Td/gjXYpd7mjw1AlsB2zLM3mWbYiGlXFd+TBTFm5apUqvq2dBTAAAAAAAIBtWADDWo7jyG2lpeq87u5gX4U4MTGhio9EIlKq6AN9m6PtG7wpLy9TxefDaT2YwSybY/ss086Uzi77r4AuL9P15HL7ZUOVAAAAAAAAIFdYAMNq5T6+e9gd8NNfsb4+VXxd3Sb1M+ibv74hszLlYqKTBTDmgVlm/yzTLjtHRj6W0dExQ9UEQ1nZbar4/oEBGR8fN1QNAAAAAAAAcoEFMKxWXb1enXP1aq+4rmugmvlLpVIyODikytm8uU79HPrmr2/IbPVq3UKur79frl27Zqga2I5ZZv8sW+3jeuv333/fQCXBsWbNGnVOc3OLgUoAAAAAAACQKyyAYbXbN92uzkkmkxKL6U5YLZT+/gFJpVKqnM11+pf/9M1f35BZzYYNqnjXdeXYm28Zqga2Y5bZP8tqamrEcRxVzptv/clMMQFRW1sjBQW6P+K/ceSokVoAAAAAAACQGyyAYbW6Tf6uvmxpCeZJmKu9var4onBY6uu3qZ9D3/z1DZn5uY72LcuXNTCHWWb/LCtetkx94vWDDz6U4eFhQxXlXmFhoayrrFTlXLrUKj09HxmqCAAAAAAAAAuNBTCstm5dpUQiEXXeyVOnDVQzf7FYTBW/c+cOCYVC6ufQN399Q2YlJSVSUlKiyhkYGJQPP7xgqCLYjFmWH7Ns48ZaVbzrunLsmN03C2y8faM6549/fMNAJQAAAAAAAMgFFsCwmuM4suuuneq8trZ2uXbtzwYqmp9Ll1pV8fv37/P1HPrmr2/w5s47tqpzjh1700AlsB2zLD9m2bZtd6pz3vrT8cB+6zkb7tq5Q51z/O0TMj09baAaAAAAAAAALDQWwLBew94GdY7runLy1CkD1fg3nUzKhQsXPceHQiFpaND/t3+CvsGUPXt2q3NOn2mUa9euGagGtmOW2a9hzx51zvDwsJw+02igmmDYtWuX+tvIiURCDnMKGAAAAAAAwAosgGG9Pbt3ydKlS9V5pwJ2Beh7Le/J9evXPccfOHC3RCLLfT+PvsGU3bt3S0GB7n8/yWRSnn/hF4Yqyo6ZmRk5evSYpFKpXJeCmzDL7FdWdpts2FCtznvppf8I/InX48fflvHxCXVeNLrC1zewf/Pqa9I/MKDOW2i9vTF55ZVXJR6P57oUAAAAAACAQGIBDOsVFxfLXh8nwFpb26S3V/e9RZPOnjuvin/gS1+c1/PoG0yJRlf4urL1zJlGaWw8a6Ci7HjhxV/I0888J48++j1pbm7JdTn4P8yy/HD33X+lzhkZGZFXfv2qgWqy48SJd+Rf/vXf5Fvf/q78/vf/o86/554D6pzpZFKefvrZQF+PPTo6Jv/8+BPy2n/9Vr7xze9Ia1tbrksCAAAAAAAIHBbAyAtf+Pz96hzXdQPzYth1XWlqavYcv2nT7VJXpz/5cyv6BlMeevABX3kvvPhSIE/sHT/+thw5ckxERPoHBiTW15fjinAzZpn9vvjXX5DCwkJ13uuvH5aurisGKpqf3t6YPPPsv4uISDweV3//WUTk0KGDvk6/X7hwUQ4fDuZV0NPJpDz+xJMyNDQsIiJTU1Oyunx1jqsCAAAAAAAIHhbAyAs7dmyXtWvWqPNOnz4TiBfDjY1nZXR01HP8I1/5claeS99gSkPDHqmsXKvOGxkZkZdf/pWBivy7dKlVnn3u+U//ecmSJXLwvntzWBFuxSyzXzQalYMH71PnpVIpeebZ52R2dtZAVf6MjY3Jk0/+9DN/2eXQoYPqnycaXSENDfrvI4uI/OfLvwzcVdA3btyQp576uXR2dn36Y/X126S0tCSHVQEAAAAAAAQTC2DkBcdx5G//7m/Uea7ryi9/9YqBinR+89pvPcdu3bJF9u3bm5Xn0jeY4jiOPPTQg75yX//DYfnd7/47yxX509PTI088+VNJJpOf/tjOnTskGo3msCrcilmWHx5++EFxHEed19nZJT/72VOB+H53PJGQx/7p8c8sXyORiK9rzEVEHvY5Z6enp+UnP3ksUEvg5194Uc6fb/rMj9137z05qgYAAAAAACDY/hcAAP//7N15eNTVvcfxzyQkJJOZEJawZQFJAgQIIGtVKITFXq3iwqa1WnstoqKgWBAFhApCXUGfqlz3/aqAVhHRCmhd2EFJgCQsYcmeTBZiJpkEJrl/eG2rbLP9JmHyfj2P/2Tme87Xk8l5eH7fOd9DAbiZapD7d7s13dvgXDN6VKo6duzgdtx3332vfRkZBmTkmu3bd+jwYddPoN144w0+nZ91g1FGpY6U1Wr1KPaNN9/SmjVrfZyRe44ePaaHFi2R3W7/2c9TR45opIxwNuxlgS8uNlb9+/fzKHb7jp164snlqq+v93FWrrPb7Vq8eIkOHz7ys59fcslFCg4O9mjM5OSeSknp41GszWbT/PkLlZ9f4FG8rzidTj377Ap99tnnP/t5SEiIR3c/AwAAAAAANAcUgJspu73agxj7ud/UhAUHB2vypIkexT7zzApVV7u/Zr7gzsmv4cMuUXJyT5/Oz7rBKKGhobr0UvfvZv3JK6++pnXrPvNhRq5LS0/X3LnzVV5e/rOfWyyWZnv6sqljL2sexl15hcexW7Zs1bLlT6uhwf9febPZSvXAA/OVmZl1ymujUlO9GnvSxAkex5aVlWn+gwuVl5fnVQ6eqq6p0eKHl2r9ho2nvDZ27BhFREQ0QlYAAAAAAABNHwXgZur48eNux1RWVhqQiX+NGPFrXXhhf7fjCgoK9OSyp/z+UHjDxi906NAhl94bFRWlKVNuMSQP1g1GueK3l3t8CliSXnzpZb32+huqq6vzYVZn1tDQoLVr12nx4qWqrqk55fUJ469RSEiIX3KB+9jLAl+/fn3Vq1eyx/HffrtJix9eKput1IdZnV1aWrrum/OAcnJzT3lt0KCBSkpK9Gr83r17aYQH9yP/pLy8XHPnLdDX33zrVR7u2peRoXvvna3du9NOeS08PFyTJo73az4AAAAAAADnEwrAzVRpqfsPNj2JaYqm3zVNUVFRbsft2vWd3nn3PQMyOr1Dh7L1wgsvufz+qbf+SRaLxbB8WDffcNa7d8dkU7iT0kitWrXSHbdP9Ti+oaFBH364RjNmzNSuXd/5MLNT2Ww2LfzLIr308is6efLkKa+3bx+tyy+/zJC5PfkcNPZnx+l0v5Wu03nquvoae5lvePb79c9ncsb0O2UOD/c4/rvvvtf0Gffo44/XGlr0r6ur04svvqy/PLT4lG4CkhQUFOSzlt5Tptyidu3aeRxfWVmpZcue0sKFi5SXn++TnM6kuqZGr776uubPX6iioqLTvufqq8Zx1zoAAAAAAMBZUABuhgoLizy6z62i4rjLJ5GaslatWmn69GkymUxux65a9b62bt1mQFY/98MPP+ixx59w+VTjZZf9RkOHDjE0J9bNN9w9fV9Z+YNBmTQdQ4cO0ZjRo7wao6i4WIsfXqonlz2lsrJTCyneqKio0MuvvKa7pt+j9PQ9Z3zfDb+7Xi1atPDp3P/KwYOuDZ50evCliuMVbscc90OnCfYy36iocP/3+4Of9rPo6GhNufVPXo3hcDj08iuvafZ99+vgQd/+2+fEiRP6eO0numPaXfpk3adnLDKPHp2quNhYn8xpNpt15523e/S5/09p6emaOXOW3n77HdWcpguCNxwOh1av/kC33XaHPlrz8RnXpXXr1rpynOetvgEAAAAAAJqD4DlzZi9s7CTgX//4fL3S0tI9ig0PN6t//34+zsj/OnbsqFpHrTKzTr1r71y2bduuTh07Kj4+3oDMfjwR9OijTyj78GGX3p+S0kf33D3D64e6rmDdvON0OvXWW/+r+nrXT87V1dXpmmuuUlBQYH9fJyWljzZt2qyqqiqvxjl2LEdrP1mno0eOymw2Kzq6nUdr53Q69f33u7V69Qd6bsXzysjIOOvpxYSEBN1yyx8N+zytXbtOxSUlbsUMHjxIHTp0MCQfV2zc+KWOHj3mVkxKnz7q0qWLQRn9G3uZ9w4cOOh2S+DIVpH6tRetiN3RtUsX5eblKScnx6txysvL9fn6Ddq9O02moCC1bx+t0NBQj8bKzj6sj9d+or8985w2b96imhrHGd8bFham+2b/WeFenGT+pQ4dOsheZdf+Awe8Gqe+vl77MjL0ySefqqioSFarVW3atPHoM9jQ0KD09D1atep9Pbfiee3ctUt1dSfO+P6goCDNmjVTsTEx3vwvAAAAAAAABDxjjiqhySotLdUHH3zocfy6dZ9q9KiRiouL811SjeSGG67Xnr173T7Zc+LECS1b/rQKCgs1Yfy1Pn3onpefr8cee0LHjrn2wLpTp06a9eeZfi0Osm6e27Fjp06cOPOD7dM5efKktu/YqYt+NdSgrJqGsLAwzbj7Ls2d+6DXbWKdTqc2b9mqzVu2KqxlSyX3SlaPHt0VGxOjmJjOioyMVHh4uEJDQ+WorVW1vVp2u12FRUU6cviIsg8fVkZGpsvFaLPZrHvunm5YAa6yslIZmZlux23bul19U1IMyOjcnE6nRy25t27d5rcCIXuZdzw5Cb137z45HA6FhYUZkNGpbps6RVlZ+2Wz2bweKzMrS5lZWXo2KEiJiQnqlZys2LhYxcbGqG2bNgoPD1dYWJhOnjwpu92u6upq2WylOnLkqA4fOaKszCwVFRe7PN+0O25T69atvc77l2688QZ9v3u3cnPzvB7L4XBo/YaNWr9hoyIiItS7dy8lJSYqJqazYmI6y2q1KiwsTKGhoaqpqZHdXi27vUrFJTZlH8rWoexsHTx40K1OF9ddN0n9+53/X0QEAAAAAAAwmqmivMS4y83QpFRXV2vJkke0LyPDq3Hi4+O04MF5hjyY9DebzaZ58xeouNi9k3U/SU7uqWl33K7OnTt5ncumTZv1zLMrXG6p2KljRz300AK1bdvW67ndxbq5z+l0au68B7V/v/snr5KSErXk4UUKDg42ILOm5cMP1+i1199o7DRcZjKZNGfObA0eNNCwOV599XV9tOZjt+PMZrOWL3vcq3s/PbVmzVq98uprbseFhITokb8uUdeuxp8CltjLPFVQWKh7Z86So7bW7djrr5usiRPHG5DV6WVkZOovDy12uZ12U3D1VeN0002/N2z83Nw8zZu/QJV+aLnuS4MGDdT9c2b7/bQ7AAAAAADA+YgW0M3E/gMHtGjxUh12saXk2Rw/XqmvvvpasbGxPnno3ZjMZrOGDh2ibdu2y26vdjveZrPps398rtLSUnXt0kURERFuj3H06FG98OLLeu+9VTp58qRLMZ06ddKiRQsb5cG/xLq5y+l0asWK57Vjx06P4svKylRaWqaBAwcEfCvonj17yOl0ev1FFX+ZPHmiLh07xrDx16/foLfefsej2BMnTmhfRqaGDB7stxOXkrR9x049t+J/3Gp1/pP6+nqlpe/RwAEDZLFYDMju59jL3FdWVqalSx9VaWmpR/EZGZmKi4vz2d225xId3U7dul2gTZu3ePSZ9Le+KSmaPv1OQ4uckZGR6tcvRd98s8ntrhSNpWvXLrp/zmyP228DAAAAAAA0N5wADmA2m01p6Xu0YcNGZWS43z7UFfHxcbp07Bj17dtXsbHn731sJSUlemjREuXled4S0WQyqVevZF180UVKTu6p+Pi40xbrnE6ncnPzlJaWrs1btigra78aGlz/M+zePUlz7pulqKgoj3P1Fdbt7BoaGrRjx0698+5Kn3z5olu3C3Td5EkaOHBAwJ+AeuONt/TB3z1vV+8PqSNH6M477zDkd5GdfVirV7+vzVu2ej1WVFQrTZ40SampIwwtnhQUFOjvH36k9es3uvW3eTrh4eGaMP5ajR07RhaL+0VVd7GXnZujtlYbN36h995b6VbL3jMZPSpV11xztd++SLZ16zY9ueypJl3wvOCCC7RwwTxZrVa/zLd//wEtWfpXn/w+jdS7dy/df/99MvvwPmQAAAAAAIBARwH4PLd9x04dr6hQTY1DVfYqldpKZbOVKjcvT2VlZX7NxWKxKD4uTu2i26ld27ayWq0KDw9TeHi4fvWroQoJCfFrPu6qrqnR8uVPe3xK85datmyptm3bKCIiQmFhYap11Mput6u4pMTjB9CjR6Vq6tQpatGi6Vzfzbr9W1VVlXJz83QsJ0dZmVnanZamsrJyn8/Ttm1b9e/XVz16dFd8fLxiY2NkNpt9Pk9j+/Szf+ill17x+k5gI0wYf61+97vrfDJWXV2d8vLylJOTq4OHsrV7d5pycly7A9Yd5vBwpaT0Ue8+vRUfH6f4uDiPi4hOp1MFBYXKyclRdvZhpaWn6+DBQ14Xfn8pNDRUyck91adPb3WJj1dcXKzat29vSNGdveznysvLdexYjo4dy9GevXu1Z89el9tTu8pkMikhoZv6pqSoW7cLFBcXq86dOxvW7j4zK0uPPPK4jh8/bsj43ujfv59mz7rXr6f1JamwsEgPP7xUefn5fp3XVUOHDtHMe2Y0+X9DAgAAAAAANDUUgM9zU2+bppISz+4u9KeXX3q+SZxYPZeGhgatWv2+Vq5c7XIrTn8wm826+eabNGb0qMZO5bSa+7pt2bJVz7/woioqGq+o0KZNG82efa+6JyU1Wg5GSEtP1/LlTzfq2v6n4OBg3TrlTxo7drTXY5WWlmrevAUqLinxeeHUVRZLhK6bPEmXX36ZyzEPzJ2vgwcPNdrfesuWLTV06BDdPeMun4/d3Pcy6cd7uFeuWq3qavdbYvtCcHCwYmNjtOzJxw0Zv6SkRI8+9oQOHco2ZHxPjB6Vqttvn9poLf7tdrv+9rdntXXb9kaZ/3SCgoJ0xW8v1x/+cGPAd7wAAAAAAAAwQmBfJgm4yWQyaeKE8Xri8UfUvXvTKKQNHjxITz+1rMkWfyXWrfKHHxq9QFlWVtZoBRsj9U1J0VPLn9SwYZc0diqKiYnRwgXzfVL8lX48+VtUXNxoxV9Jqqqyq7y8wq2YwsLCRi2O1tbWqrio2JCxm/teJkll5Y27lzidTuXnFxg2fnR0tP669GFdf/3kRu+mYbFYNPXWKZo27fZGvd89IiJC9903SzNm3OWXluvn0qVLFy1dslg333wTxV8AAAAAAAAPNZ0+skATEhcXp6VLFuuLL77U6tUfqKCw0O85JCQk6PrrJmnAgAv9PrenWDcYwWq1auY9MzR8+DC9+ebbhrRHPpuwsDBNnDhe4668wrDWtGha2MsCW3BwsCZOGK+hQ4bo9Tfe1K5d3/l1fpPJpNGjUvX739+gyEj/3PfrihG/Hq5+ffvqvZWrtH79Br9/0SM0NFQTJ4zX1VePY68FAAAAAADwEgVg4AxMJpNGjUrVyJEj9M+vvtZHH32so0ePGj5vcnJPXTXuSg0ZMtjwuYzAusEogwcN1KCBA/TNN99q1eoPDC8Em81mDRt2iSZNnKA2bVobOheaHvaywBcfH6d5c+9XVtZ+vfvuSu1OSzP0RH5wcLAGDLhQE8Zfq6SkRMPm8UZUVCvdOuUWXX3VOK1cuUrffrtJjtpaQ+eMjo7WpWPHaOzY0YqMjDR0LgAAAAAAgOaCAjBwDkFBQUodOUKpI0foyJGj2vjFl9q8eYtKS0t9Nkd0dLQuufgijR4zSjGdO/ts3MbEusEIJpNJw4cP0/Dhw7R//wGtX79Bm7dsld1u99n4ffr01qjUkbr44osUEhLik3Fx/mIvC3w9enTXgw/OVXFxiTZs2Kh/fvWViotLfDZ+bGzMj18mGDFCUVGtfDaukdq3j9a0abfrj/99s77+6ht98eWXOnDgoM8K5KGhoerdu5f+6zeXatCggbR6BgAAAAAA8DFTRXlJ410+CJzH8vMLlJ6+R/v27VNObq4KCwpdOiXTokULdezYQXGxserdp7f69evbrB74s27wtfr6eh08eEi709KUsS9Tefn5stlsLhUqzGazEhMSlJDYTUmJierRo7tat+a0L86NvSyw5eXna/fuNO3ds1fHcnJVVFTkUkvkkJAQde3aRQkJCUpKSlT3pETFxMT4IWPjVVVVKS0tXWnpe3TkyBHl5xeoqqrKpdhWrVqpe1Kieib3VHJyTyUlJtLmGQAAAAAAwEAUgAEfKisrV2lpqWocNXLUOORwOBTcooXCw8JkNpsVGRmpjh07KCgoqLFTbVJYN/haXV2dCgoKZbfbVV1dLYfDIZPJpAhLhCwRFkVEmBURYZHVauHkGXyGvSxw1dfXq6ioSMePV/5rT3E6nTKbzbJYLIqIiJDFEiGr1dqsCpuVlZUqLi5RTU2NHI4fP/MhISGyWq3//59FVqtVLVrQdAgAAAAAAMCfKAADAAAAAAAAAAAAQIDgCAoAAAAAAAAAAAAABAgKwAAAAAAAAAAAAAAQICgAAwAAAAAAAAAAAECAoAAMAAAAAAAAAAAAAAGCAjAAAAAAAAAAAAAABAgKwAAAAAAAAAAAAAAQICgAAwAAAAAAAAAAAECAoAAMAAAAAAAAAAAAAAGCAjAAAAAAAAAAAAAABAgKwAAAAAAAAAAAAAAQICgAAwAAAAAAAAAAAECAoAAMAAAAAAAAAAAAAAGCAjAAAAAAAAAAAAAABAgKwAAAAAAAAAAAAAAQICgAAwAAAAAAAAAAAECAoAAMAAAAAAAAAAAAAAHi/wAAAP//7NmBDAAAAMAgf+t7fKWRAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgQgADAAAAAAAATAhgAAAAAAAAgAkBDAAAAAAAADAhgAEAAAAAAAAmBDAAAAAAAADAhAAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGBCAAMAAAAAAABMCGAAAAAAAACACQEMAAAAAAAAMCGAAQAAAAAAACYEMAAAAAAAAMCEAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgIgAAAP//7NnNKsRRAIfh0zCjTIpmoSS2GrkG126vLKRJooQiaXw05J+vmxhz6nee5wre/WsAAwAAAAAAAIQwgAEAAAAAAABCGMAAAAAAAAAAIQxgAAAAAAAAgBAGMAAAAAAAAEAIAxgAAAAAAAAghAEMAAAAAAAAEMIABgAAAAAAAAhhAAMAAAAAAACEMIABAAAAAAAAQhjAAAAAAAAAACEMYAAAAAAAAIAQBjAAAAAAAABACAMYAAAAAAAAIIQBDAAAAAAAABDCAAYAAAAAAAAIYQADAAAAAAAAhDCAAQAAAAAAAEIYwAAAAAAAAAAhDGAAAAAAAACAEAYwAAAAAAAAQAgDGAAAAAAAACCEAQwAAAAAAAAQwgAGAAAAAAAACGEAAwAAAAAAAIQwgAEAAAAAAABCGMAAAAAAAAAAIQxgAAAAAAAAgBAGMAAAAAAAAEAIAxgAAAAAAAAghAEMAAAAAAAAEMIABgAAAAAAAAixXDsg3fT0qJSf79oZANCc1e29sjLaqp1BkNn1WemeH2pnAEBzBuubZbi7XzuDIJ9Pd+X99rx2BgC0p7dUNg4Oa1c0wQD+Z2+XJ+X3q6udAQDN6a+NDGDm6uP+qsxuJrUzAKA5w52xAcxcdS+P5fXiuHYGADSn1x8YwAvyBwAA///s3WtUVeedx/Ef9/tVuSgoCiJegrdovGKNNjHGaLRp00lmGk2nYzUuna6ZWdOumVmTts50OnFlNVUnWdOmM+2kTeKy0SSNzSQToxUv8Y6IigqiCEFFLgKHAwc4zAtksw8c4ACHHDn5fl7t/ex9/uc57IdXv/08D0tAAwAAAAAAAAAAAICXIAAGAAAAAAAAAAAAAC9BAAwAAAAAAAAAAAAAXoIAGAAAAAAAAAAAAAC8BAEwAAAAAAAAAAAAAHgJAmAAAAAAAAAAAAAA8BIEwAAAAAAAAAAAAADgJQiAAQAAAAAAAAAAAMBLEAADAAAAAAAAAAAAgJcgAAYAAAAAAAAAAAAAL0EADAAAAAAAAAAAAABeggAYAAAAAAAAAAAAALwEATAAAAAAAAAAAAAAeAl/T3cAAAAAAAAAALyN3d6qA2cLdOT8NRWU3tGtqlo9OD5Z//Ltxz3dNQAA4OUIgAEAAAAAAADAja5+XqHv//IPulxS7tA+2ZbooR4BAIAvEwJgAAAAAAAAAHCT2vpGbdqxWyXl1ZKk6PAQLchMVWpirDJGJ3i4dwAA4MuAABgAAAAAAAAA3OSjk/lG+DtnYope3vCkwkOC+lynztqonfvPGOfpyXFaOCVN1sYmvbnvlNGeljRci6aOG3jHMSCXS8qVnVtonGdNSdP45Dhd/bxC+3OuGO0LMlOVMSreE10cdDsPnFFdfaMkKTw0SN9cNF2S9PuDZ3W3zipJCg0O1DOLZ3isj0PB4bwi5Rff6vGeJ+dnanhUWL+/g/EKeD8CYAAAAAAAAABwk4LSO8bxXy2f26/wV5Kamlu0bU+2cf7nSx7UwilpsttbHdr/7OHpBMD3geu3Kh2eS0pirMYnx+lGebVDe3JctNcGau8czNWlG7clSRNGxxsB8LuHzulcUZkkKT0pjgC4FwdzC/W26eUPZ+ZMGjOgAJjxCng/AmAAAAAAAAAAGAShwYH9/mxEaLDDeVhIoFHTz9dXLXa7JPU7YIZ7dX5e7c+l/bl13Oe9z8v828zj0nzszb/fXcJCgpQQE9GlvbK2Xk3NLW75DsYr4P0IgAEAAAAAAADATWLCQ4zjihpLv+v4+/kqLCRQFqtNkhQe3BbE+Pi0hTLV95bU7U8AbG9t1dnCUpVV1KqixqJvPTKz3/1Em4hOzyH8Xvjf/tyMdi8O7M1/A/PvDjO9CMF47d3m1VnavDqrS/uz//qGzl+76ZbvYLwC3o8AGAAAAAAAAADcJC463Di+c7f/AbAkRYWGdATAppl4ESEdAXB/ZuhZrDat/fe32uqGBHl9oPZF6Pwc2oOz8C4zKh1nXnoTc1honkk60BnAjFf3Y7wC3s/X0x0AAAAAAAAAAG9hDoDLq+sGVMthSV3TLEpzuNZ5Jh88o8uMSiNQC+rxPm8S0eklhXbmGcDe/PuHEsYr4P0IgAEAAAAAAADATeLNAfBdNwbA7Kl6X+s8U7L9uXQJ1Lz4eTnOAO59NjA8h/EKeD+WgAYAAAAAAAAAN4l34xLQDvuomkM0h/1Vv1wBTVlljcoqauTr46PkuGgNjwobUL3qOquu36pSY1OzosKClTpimAL8/fpcx9/PV2HBgbI02BQU4K+gAP8e272ReVyaZ6x3N47vB62t0o3yKt2urpNapdjIUI1JiJWvr8+A6lqsNhXdrFB9Y5OCA/2VkhCrqLD7Zzllxivg/fjvBQAAAAAAAAA3iQ4PVVCAvxqbmge8BHTnfX/bOSwB7cIMvT8eu6jX3j9snLe2thrH9Q02rfjH151+bv2KeVo+Z5LTax+dyNeOdw9JklISY7Rj01O99kOStrzxsY7nF0uSNqycr8dnT+xyz8u7DuhAToGCA/2168W1kqS9xy7ot/93Uheu33K4d1pakjauWqCHJox26fvb7c8p0P98fEKnr5Q4tIeFBOqRBzP03SfmauSwqD7VjAwLlqXB5nR/VUuDbcABoK25RXlFZfL19dHklMR+BdWDqbsZ6+bxGhnS+99gMMZrZzX1Dfrv/z2uD46ebwt/TaLDQ/TYrAn6y8fnOLzQ4Yqj56/pNx+f0LGL12U39VtqG6vPLJmhx2ZN6FPNwTLY4xWAZxEAAwAAAAAAAICb+Pi07QNcUl494CWgUxJilJ4UJ0mKCgsx2kfHd7RHh4c4/axZfaNNxbernF6zt7Z2e21YD7NrH5owWmWVNWpqblHx7SqVlFcrOS66x35YG5v04fGLsjTY5O/nq9kTnYe21XVWo0819Q366Vv7tPezC07vzSks1YZXdulnL6zSwilpPX6/1PZ7t+78VG/uO+30usVq07uHzik796p+9sIqTU0b2WvNdhNGxSs8OEgJMY6hYcaoeEWGBmvEsEiXa3X2ecVdbdq+WwWld4yaOzY/1eeAcjAlxEQY4zLe9DdIiO5oT4iJ6LXOYIxXs5Lyam3c9o6u3ax0er26zqq395/RRycv6aV1K1x+ueAXHxzVf7x3qNvrOYWlyiks1YGcAm15fpnHA/zBHK8API8AGAAAAAAAAADcqH3x2PqGpgHVWbd8rtYtn9ulff2KeVq/Yp7LdTLHjtDfPf2wcW5rata2PdmSpKAAf21aneX0cxNHJ3RbMyYiVHMnjdHB3EJJ0r7TV7Rm6awe+3H4fJEsDTZJ0pyJKRoW2Xtg9w+/2qvs3KuKjQjVc4/O0rRxIxXo769zRWX6rw+P6VZVrZpb7PrB6x9o1z+vVdLwnmftbnnjY+3OzpUkhQYF6mtZmZozaYwiQoJUWnFXez+7oMN5RaqosWjDz3fp7X96TqPjY3rtpyS9snG10/btm77m0ud7rP3OQSP8laRLN25r+55sbXl+2YBru8v8B8Zq/gNju7RnTUlV1pRUl+sMxnhtd+euRd95eafKKmokSWMTY/X0ounKGBUvP18fXSkt164/ndWlG7dVVVuv7726R7/++2c1Pjmux7rm8NfXx0cr5z2gh6eP0/DIMFXVWZWde1XvZJ9Vc4tdHx6/qEB/P/3Yw89uMMcrAM8jAAYAAAAAAAAAN7l+q0o3yqslte0nej/IGBWvjFHxxnltfaMRqAX4++lbj8zsV92lMzOMAHh/TkGvAfCnZ64Yx4+6uAxudu5VTU0bqVc2rlZsRMffc/KYRGVlpuq5n/5Od+5aZLHa9Nanpx2Cw84O5hYa4W9ibIR2bH7KmJkqSdPGJWn57En6zz8c0avvH5bFatNLb3+qHZtdW956MF3stPS1JOUXd23zBoM1XiVp+55sI/ydPTFFP9+4WiFBAcb1aeOS9OT8TP3ta+/pYG6hLFabfvK7T/Tr7z/Tbc1rNyv1+h8/k9S2h+7W767U4unpDvdkZaZq8Yx0bd6+W41NzXrvSJ6WzprgNDAHAHfw9XQHAAAAAAAAAGCos9tbdeR8kf7mtXeNtkVTx3mwR4Pv4enpCg1q29/1TEGJblbWdnuvrblFh/OKJEnBgQFa0ikg6056Upxe/euvO4S/7ZKGR+nby2Yb5+8dzlOL3e60Tovdrq079xvnP1q7zCH8NVv3xDzNurfsb/a5q132HfaElMSus5BTEmI90JOh60ppud4/kiepbQz+eO0yh/C3XaC/n364Zqmxj/GZghKdulzS5b52r71/WI1NzZKkpxdN6xL+tpszMUXPLplhnL/xycl+/xYA6A0BMAAAAAAAAAD0Q15Rmb7z8k59c8tvtOB727Thld8by/R+dcb4Pi3TPBSFBQdqoWlpX/MM386OXbiu6jqrJGnhlFQjXOvNmqWzerz3iTmT5evTtuh2TX2DwzLJZofzioy9Y6eNS9KciSnd1vTxkb6xcKpxnn1vlrMnbVqV5RCCD48K0wsr53uwR0PPgZxC2VtbJUlLpqcrMbb7/YiHRYbpqzPGG+eH8q46va+xqVnZpmvf+Mq0HvvwddO4OnnphuqsjS71HQD6igAYAAAAAAAAAPqhpr5BJ/KLlV98WxZr2962EaFB2rw6S1vXr3Q6u9DbLDUt5bw/p/sA2Hzt0ZkZLtf39fXp8XpUWLDGJHbMhO1utu7RC9eM4/mTe192d0Z6snF86kr3sz+/KBmj4rXrxbX64ZrH9KM1j2nXi2uVOnKYp7s1pBy9UGQcP3RvhndPZmaMMo6PXbzu9J7Tl0uM//2k4VFKHdHzM0mOi1ZKQtts7qbmFh3PL+61HwDQHwTAAAAAAAAAANAPwyLDtHTWBM2bPFbJcdGSOvYr/Yuf/Fbl1XUe7uHgW5CZqujwEEnSqcslunPX0uWeFrtdf7o3izYyNFgLp6S5tQ/mALj8rvO/+eUb5caxK8FpXHS4ggL8e6z5RRseFabVCzK1akGm0yWx0bOrZZXGsbMltTtrD2ol6dqtSqf3mNvN47Dnuh33ldzbLxwA3M3f0x0AAAAAAAAAgKEoY1S8Xlq3wjg/f+2m/u3NT3SuqEznr93Utj3Z2vL8Mg/2cPAF+vtp8fR07c7OVYvdrv05V7osg2sOhhdPTzeCVXcJDQ40jmvrnS+pe7OqY3/iN/ed0t7PLrhcv7Kmvv+dw32hucWuqtqO5xgT3nuA3v5igyRZrDY1NjV3GbuVpprm+12tW21pcOkzANBXBMAAAAAAAAAA4AaTxyRq6/qVevwHv5C9tVXH850vG+ttHp2Zod3ZuZKkfWe6BsDmvYGXznJ9+WdXhQR2LLVtbWxyeo+5/dTlvi3p3F1NDB019Y5Ba1Bg79FIcKDjEu41lgbFRYc7tJlfOAh28cUGc4hcW08ADGBwEAADAAAAAAAAgJuMiI1Ucly0im9Xqb7hyxEczp6QovjocN2urtOJ/GJV1dYr5t4Sxa2t0oGzBZLallWePTHF7d9va2o2jsNMs4HNAgP8jOOvTE3r0xLKnYNADD2dx0VTc0uvn2k0jStJCg8J6nKPefa5zYWakuN4DQ/uWhMA3OH/AQAA///s3WdAW9fZB/C/BEggIfbeYJbBk+G9dz1iJ3HsjGa0SZrRpEmTNE3St03atEmz9x7NcIbj2E48EhvHC2IbLwzY4MEeYg+BhED7/SBzdQUSCNACnt8XX8HR5fjqcjn3PPc8DwWACSGEEEIIIYQQQgghxIq0Oh0AQCQYH8EdLpeDFRlJ2PLLWag1WhwpKMO18yYDAArKxKhv7QQALE9PhAuXa/WfL+02rML0FrqbbBPgJWT6cc2cSViWlmj1fhDnxXdzhacHH7Kr50qnBamX2W2EHjx48Ps/CODLSudsLv14X+zz1VdkWdpoQggZKuv/tSWEEEIIIYQQQgghhJBxSqcDmiUyAECgt+cgrceO5RmG1M7slM+H80uZ7RUZ1k//DADVTe3Mdoifl8k2caH+hvaN7SbbkLEtMtCH2a6y4Bxgt4kJ9jPZJszfcL5VNbZZ1I9KVrvIIF+L3kMIIUNFAWDiML1PQhJCCLEMXTcJIeMBXeoIIWMRjeMIGV/apF1M6tgAb6GDe2Mah2PY1lnpGjVtQjiig/XBrJMXq5iaq4fz9cHgqCBfTJsQYZWfxdbS0YXyulbmdXqi6Z+RkRTJbLOD0qNJV48SOYXl+PVCxbiqS2yt83XGxChmO6908DrQZ0tqmO05qTEm22QmR8HVRR9mqWhoQ0ObdMB9NrZLmfOV7+aKGclRA7YfrXQ64JtDebjluS24+T9f4ssDZ2g8RIidUQpoYhfilg78dPIi8kpqUdXYhiaJDDcuno7HNi12dNcIIWTUuPX5r1Be14oQfxHiwwIwMzkav5k50Wx9I0IIcXb5ZWIczCvBhYp6VDe1o13ajVfuW4/F0+Id3TVCCLEaqVyBeQ+9CS+BOyICvZEcFYz5k+OwaGo8uFzO4DsghIw6TVdX/wL6mrfOSODOg6sLF2qNFl09Skhk3fDxHHkq2hUZSfhoby4UKjWOFpQhPjyAWUW5PCPJKJBnqbZO+YDf332iiAksJYQHIthXZLLd0umJeGnrYXTKe1BYXofjRRWYkxo79A45SHVTO/74xnZmtXNsiB/efXgjwvy9Hdwz27PW+Tp/Uhw+338aAHAwrwQPX7fQbJr2TnkPDuYZVrIvmDLBZDsvgTsyEiORe7EKALDr+AX8Ye1ss3348dgFZnvmxOghzenw3QzhnL71iZ3N99n5+O83B5nXRZUN4HA4+O2ydAf2ipDxhVYAE5vS6nR4d9cxrP/7J3j7hxwcL6qAuKUDKrXG0V0jhJBRR6fTQa5QoryuFVlnLuPZLVlY+9RHRqm1CCFkNJDKFXjkvR9x+3+/xhdZp5FXUouWji5otFpHd40QQmymU96D4qpG7MgpxJ/f/QE3/vsLoxVrhJCxo5kVAHbWFcBcDgeTYkKZ1/tOX7LKfldmJjPbh86VGN2vrhxm+uf3dh3DieJKk98rq2vBZ/tPMa8HCi4JPXi475q5zOunP9uHS9VNZtu3SeV4aeshtEsHDkDby+vbs41SXVc0tOHtnb86sEf2Y63zNTM5CjMnRgMA2qVy/PfbgyYzEOl0wAvfGj77xdPiMSUuzOx+71w9i9n+LOsUiqsaTbYrrmrEZ1n685XL4eCeAQLFpoSy0k3nl4qH9F5723eq/2f008liB/SEkPHL5YknHn/G0Z0Yyzou5QLa8Rvs/PTnk3j3x2PQavV/SX08PTB3UhzmT47DrJQYRFGNA0IIsZhaq0VkkA88Pfholsig0WrRrVThl7NXMGNiFELN1DkarwSh8eD5hji6G2QMkYuvQNXZ4uhujHo6HfDo+z/iSIEh7V5UkC/mTY7D/ElxmJkSDV8rrD4hhBBnotPpa09yuVxmZWBrZxeOFpZi3exUuPPcHNxD58bzDoQgPNHR3SBjiLK9Ad31ZTbb/+nLNcgu1O9/zcwUJEcF2+xnjQSHAxy5mgr5XEktOBwOBO48qDVaVDa0IfdiFd7YkY12WfeAwS82fy8hjhaUoaWjC/VtUjS2SyGRdSMpMsgo+DqYw/mluFyjD86q1Br8dPIiGto6IXDngcMBGtql2H2iCP/8Yj8ksm4AQGJEIJ66ZfmA2RVSY0NwrqQW4pYOdPUosSe3GBKZHDxXF3A4QJu0G+cr6vHNoTw88/l+nLlSg+omCVaxAtuO8vYPv6Kjq8foaxwOsGnRNAf1yL6sdb4mRgRi94liqDVaXKltRn6pGN5Cd7jz3NDVo8S5UjGe++oA8/CCSMDHS/esH3DFcXiAN2qaJSipbYZKrcH+05eg0+kgEvDB4XAgbunAzl8L8a8vs9DVrQQAbFo0HdcvmDqkY6DV6ZB15jIAfQCYy+FA6M6DSq1BZWMbDuaVIL9MjKkTLPt9taWdv55HQ1un0dd8PT3GzflKzOO4uMA7edbgDcmIUQpoYjMqtQb/Yz2Bd/vKTDywYT54ri7D2l9VYzvK6w1PR0cG+iA+PAA6HYwmEF24HLMpOYhz6OjqQV6Joc6GyIPP1GHJK6k1GsymJ0bAS+Bu9z7aGx2TscOWn+XmRdOZ7dbOLvzt059woqgSGq0WH+/NxTsPbbTC/4AQQmyroFyMnPPlAPQpzP55xyqsypw4rHSAgD6NdLu0m3k9OTYUAd5CtEvlyC+rY77uJxI4xUQIMY/G+/3RMbEvWx1vvpsrHrx2PvO6uKoRj3+wCzXNEjS0SbE9u8Bo5RAhZPRrHgUpoAFg/ZzJyC2uws+nLqKrR4k3dmTjjR3Z/doVVTZg9cyJ8BMJLNrviowkXKxuRI9ShcqGNuZrw7UsLRFHC8uw89fz2PnreZNtwgO88eYD1zG1WM3hcjh484Hr8NQne3HoXAl6lCps+eUstvxy1ux7PPhu6FGqHP6wTnx4gNEKYACYEBbgoN7Yn7XO16TIILz94HV45L0f0SnvQe7FKiZ9c19+IgHefPA6prb1QJ65fRU0Gi32nb4EWbcCb+3MwVs7c0y23TBvMp64aemg++xrWVoSFk+Lx+H8UihUary5Mwdv9vkZviIBNi+ePuw5eGu5dv5knOtTZzkhPNBBvSFkfKIAMLGZEnELpHIFACAmxA8PX78Q3OHO7AE4dqECL3xrqBtw77o5iA8PAIcDPPb+j1Br9CkDfUUCHHn1jyPrPLGphrZOPPzOTub1jOQoZCRtBgB8tDcXx4sqmO9994/bx0Wwk47J2GGvz9LfS4hnbluFlX99HwBw5krtIO8ghBDncL68ntlePXMifjNj4oj2t+XAWRw4e5l5/dGjmxHgLURFQ5vR9XhFRhKmTrhmRD+L2BaN9/ujY2Jf9jreKdHBuO+auXjqk70AYPSwCiFkbGA/+OvnZVnQ1BE4HOC5O9cgMSIQW345i9bOrn5tooN9cc2cSXDnWT6NvDIzuV9gbiQB4CVpCbhlWTpe+/4oCsuNr5lcDgeLpyfgsU2LjNLjDsSD74ZX7l2Pbdn5+PpgHhOkZhPweZg3ORY3LUlDWkLEsPtuTQ9eOx+XqptQ19oBQP+g0h83zHNwr+zHmudrZnIUPn/iZrz9w684WlDK/I3v5ebqgiXTE/DAhnkWZ7Dkubrg+bvXYsqEMHz1y1mIWzr6tYkK8sVtKzKwccG0YT0Ay+EAL95zDd778Ri2HjmHrh6l0fe5HA7iwwPQ2tFl8e+DrayfMwnbjuTjfIXh/m/5CK4DhJChowAwsRl2DbcQX9GIgr8A4OnB6/Oaz2x7CdzRdrUmg5eAD+LcRH0+I/Zn2fdzHi+BTjomY4c9P8sQPxFcuFxotFqqm0kIGTXY1ytrpK43N0ZkX39NvSbOh8b7/dExsS97Hm/2pKyWxnGEjDnsKbC+KXudDZfLwe9/MxO3Ls9AcVUjxC0dUKrU8Pb0wIQw/2GVbwsP8Mbu/9yF9f/3CbQ6HTKTo0ZcBi4tIQJfPnkLKhvaUFrXAplcAR+RB1KjQ4a1yprL5WDzounYvGg6yutbUV7fCplcAYE7D4E+QqREh4Dv5lxT53Gh/tj29O04dakaXC4HmUlRELrzBn/jGGLN8zUu1B+v3rceElk3LlY1orlDv3I/0NsTKTEh8BYOfc6Gy+HglqXpuGlJGkpqm1HZ0IZuhQoCdx6ig32RGBE07MxHvXiuLnjo+gW4a/UsFJbXoalDBi6HgwAvIZKigixeqW9rao0W5Q2GzCoRgT5YMCXOgT0iZPxxrr9iZExhD0AkXd0DtLSMqE+gRGQUVOEzN+N92w2HRNYNTw/+oGljyPCIPIw/I/bESt+Ba99g2lhFx2Rw3QoVtDqd09/c2POz7JT3MIGU4dyYEEKII3i6G6591pgQ7R/o5Rn9a67dUGl1OrRL5fD3Eo5oP8Q8e473Rws6JvZl73tO9r4JIWMLu+bvez8eQ3xYAAK8nXsM4ebqgqkTwqxWMuO7I/nQ6nQAgGvnTrbKPgF9lsGYED+r7Q/QBwLjQv2tuk9b8fTgY8n0BEd3w+Gseb76eHpgdmrMyDvFwuVwkBQZhKTIIKvul03owbN6v62pqLKBqXcMADcsnAoXLs21E2JPFAAmNhPEevquqV02QEvLePYJnAhZk3rsIErfdpaSK5S444VvIG7pgKxbgR+evROxVh5QEj2hBw9cDoe5EWBP0LInP7gcDgROHuyzFjom5j318V6cvFSFlo4u/P3WFdi4YKqjuzQge36W7GtrkBPXlSKEELYAH8PkZ+9T9iMh6hM4EZlZAdy3naXOXqnFv7dkQdzSAR9PD2S9eO/wOkoGZevx/mhEx8S+7Hm82dc/Z64PSggZnpUZSfgi6zRKxS3ILxNj9ZMfIj0xEiF+IqQnRGDt7FRHd9GmKhrasO1oAQAgLswfKzOTHdwjQoi95ZUYSpUJPXi4dt4UB/aGkPGJHrkgNuPpwWcm3tqkcihU6hHtr+9T1uZW1Q33aWyNRofLNU2QdSuG10FiMS6HAy/WakX2SiD2Z+kldB9x6vDRgo6JeZWNbWjp6F/XxVnZ87OkiUNCyGgU6G24Xlnj+u5pJvU++/rL/vpQdcp7UF7fOuKxLBmcrcf7oxEdE/uy5/FukRiuf86+KpAQMnTuPDe886eNmJEcBQBQqNQ4XlSBHTmFOFJQ5uDe2VZ1Uzseee8H9ChVAICHrltAGfYIGYfyS8XM9rpZqZS5jhAHoBXAxKZC/EQoFesDqs0SGSICfYa9r76pUvum4zJs09Pvo4GXwJ1Je+Zp5rMcb7Vu6ZiMHfb6LJslFAAmhIw+wb4iZpt9HRuuvgEaN1cXAPr6YJ4efObhPhojOj8a7/dHx8S+7Hm86UE+Qsa+ED8RPnp0M/JLxTh2oQLVTe1ol3UjxE80+JtHofL6VuzNLcZ3R/LRKdeX+bhtRSYWTY13cM8IIfam1emQX6YPAHM5HGxePN3BPSJkfKIAMLGpQB9PlIpbAOhvcEcSAO5f383wmp1GleonjQ5GaXEF5p6sH1+fJR2TscNenyU7cBLkTROHhJDRwc9LADdXF6jUGjRJZNDpgJEkRGAHaPoFbwTsADD9DXV2NN7vj46JfdnzeNM4jpDxY1p8OKbFhzu6Gza1+dnPcam6yehrty7PwJ+vX+igHhFCHOlyTROzMGLe5LhRU2ObkLGGAsDEptg3ss2SkaX4E3nw+9TV5Bt9z9T2QHpr/fbq6lEafb+yoQ1KM6n+4kL9mdUlfXXKe1Df2sm8jg8PsLjAfZtUzkwEuLm6mP3jWF7XCpVGA56bq1GdYomsG0fyS1HbIkFXjxJ+IiGmxIUiMzlqRKlmC8rqkF8qRnOHDFqtDv5eAqTGhiIzKdLi/1tf7LRpnmYmU4Zbq2+0stUx0emAivpWXKxphLilA51dPVBrtPD04CEiwAdT48OHXO+6vq0TnV36J3p9RYJB6882SWRol8oB6Fe+hvp7mWzXLpWjqc9qMHbKzSaJDJdrmvq+DQAQ4uc15HQyGq0Wpy/XoLiyAa2dXdDpAB+RB5IigjArJRp8t+H9mbTX+d3Sabiu0soRQshoweVwEOwrQm2zBAqVGu0yOfxEgmHvz/jaavx3QOTBRz1r2xIl4mZotTrmdV1rB7Ot0WrN/h1yc3FBXJj5iY2GNik6uvSTIH3HcIOpbZYwY1VvoYfZlUOjfYxo7fH+WGDLY6JSa1Bc1Yjy+lbUtXRA1qMAl8OBSOCOuFB/pCVEDDk1sblzUKcDCsvrUFAmRpNEBhcuFxGB3pg7KRZh/t4D7tMe91e97HkONrNS4Af5js3VgISQ8SPYV8QEgKfFh+P3q2Zi4dQJDu4VIcRR+G6u+OuNSwEAmcmRDu4NIeMXBYCJTQX4WK/GW28av940MuwVHkZPY1u4qu7l7w7j0LkSs99/+J2dpvvB4SD3nYfNvq+tU45N//qcef3uQxsxd1KsZX3aehh7TxYDANbOTsV/fr/aZLsH3toOcUsHgn1FyHrxXihUary1MwffHck3WZ8uPjwAT9+2ElPiwizqR68TRZV4bftRsxOdEYE++OP6eVg9c+KQ9guYT4srtPKT9Zeqm3C0oBRcLheLp8UjPjxgxPu0FWsfk4Y2KT7aewJHCkoH/f2bOTEaf9m8GAnhgRbt+90fj2HX8QsAgFuWpuPxG5cM2P6LrNP48sAZAMCaWSl47s41JtvtyS3Gy98dNrufD3Yfxwe7j5v83nsPb8ScVMt+1wBgR04hPthzHA1tUpPf9/H0wG3LM3DHqhlDnsS21/nNfrAmkFaOEEJGkUBvT9Q2SwDoV8GNJADMHhP2vbYKWXWALa3ZeccL3xg9JMjW0tFlNM5jS0uIwP8ev8nsfo8VVeBfX+wHoJ8QOfTK/Rb9LdDqdLjrla1MAOzp21biuvlTTLYd7WNEa4/3B5JTWI5zZWL4iQRYOysFPp4eI96nLdjimOSV1GLLL2dxoqgScoXSbDs3VxesmZmCP29caPHx6T0HQ/xE2P/CvQCAvbnF+GDPcVQ1tpv8Gb9bOQP3r59nNhOAPe6vetnzHGxsN4xBA32oBjAhZHS7YcE0LE1LRGp0iNXmXWZNjEZ8WADCAryQnkgBJEJGk7hQf1r1S4gToAAwsSlf1kRB7+q/kVgzKwWd8h5wORyjlXmTYkKwZlYKAFgcwBquyCCfAVcFxoT4YUpcGArL6wAAh/JLLJqgUKjUyD5fxrxelZE86HtaOrogkXXjj29ux4WKerPtSsUtuPf1bXjvoRswdYJlE3yf/nwSb+3MYZ5+N6W2WYInP96Di9WNePSGRRbtt9fMiVFw5+mPY1iA4an/sABv5rO0tK/mZJ25jKc+2QuVWgMA+GjvCbx4zzqnrT9j7WPiwXfD7hNFJid8+zp5sQq3Pf813v7T9UhPjBhiz51DbIhlA0utVod/fPYzdp8oGrCdRNaNN3fm4MyVWrx2/3q489ws7os9zm/A+Lrq7Un1oQkho4evyDBGbBvhGDHQ25O5tk7oM8kwf3IswgL0WSeGupJxqGIGWdG7LC0RL3xzEAqVGgqVGkcLy7BmZsqg+y0oEzPBX76bK5amJQ76ntE8RrTHeP/l7w4zD6YBwOf7T+HzJ24edCWqo1j7mMi6FTiYd2XQdiq1Bj8cO4/8MjE+/cuN8Pey/HeopaMLcoUSf/1wD7ILDfc4Qg8eFEo11Bot8zM+3HsCviIBbl6aZnJf9ry/AuxzDqrUGiYtojvPDQI+1XAmhIxu86fEWX2fvddcQgghhAwPBYCJTak0GmZboR48CDWYJ25aavLrS6YnYMn0hCHt667Vs3DdPMPqiW6lCn/5YBfz+u+3rkCwT/9UXCLh4E97r8hIYiYojuSX4qmblw26gjC3uApSuX61ib+XELNTYwb9ORqtFg9cndgL9ffC3WtmY05KDPy9hahtkmDrkXP47kg+tDodurqV+Pv/fsL3z/wOPDPpq3t9n12AN3ZkM69np8bgliXpSIkJhpurC8rrWrE9p5BZAfpF1mlEBHpj86Lpg/a51+ZF0022jw3xM7s6dKhe2nqICf4C+kmgl7cedtoAsLWPibfQHXMnxaKjqxszk6OREhOCqCBfeAn46JQr0NDWif2nL2FPbjEUKjXkCiWe/HgPfnz2TnjwLQ92WtPiafGICTaeQH9522FUNrQBAG5emoY5KaYn/EL8TKeV7uu17UeNgr8rM5OxaeE0JEQEwoXLQam4BduyC7DnapvjRRX45xf78fxday3+f9jj/AaMr7HdCpXV9ksIIbbGvn4pVZoBWg4uwFto9tp65+pZQ97fS/esg0ZjCG6er6xnsk/4igR49o7fmHxfZJDPgPvt/bvcm4Hm8LlSiwLAh/NLme25k2ItKncwmseI1hzvm1JW12IU/AX0JSY+2H0C/7xj1Yj3bwvWPiazU2IQ6u+FiVHBSEuIwMSoYIQFeMGD54aWzi5UN7ZjR04hfr1QAUBfGuffWw7gtfs3WPwz1Bot7nvte+SXieElcMcdKzOxdnYqgn1F0Gi1OHulFs98vg/iFn2K9U9+zsXGhVPNnoP2ur8CbH8OAsbXQLVGA6VaM+jvHyGEEEIIIYQMBQWAic3odMCxq5MGgPOlJ02NCTF63Ts50Cs9MXLIdVF7rchIwqvbjkCr06Glowtnr9RiRnLUgO85lG9IR700LQGuLpalnD1fUY+0hAi8dv8Go9RscWH+ePLmZfAVCfDermMAgKrGdvyUW4wN8yab3Z+4pQOvbjvCvL57zSw8sGG+UZtp8eGYFh+OlOhg/PebgwCAt3bmYEV6EnxHkMLRmiSy7n61ZAGgplkCuUI5bp6yf+Xe9eBy++fT8xUJEB3si5kTo7FuTiruenkr1BotGtul2JtbjI0Lpzqgt/qUkRGBxhPo7+0+xmxPCAsY0ZPF5yvqsYU16fvHDfPwhzWzjdr0nt/xYQF4fftRAMBPJy9i9YwUmzzVPBLBrHpx+05fwsyJ0Q7sDSGEWEYi60ZBaR3z2tYrc4eqbzkBtVbLbPNcXUb0t2B5ehITAD52ocKiMcnhc4YA8IqMJIt/Fo0RTau4+lBZX5Vmvj4Wubm64Kfn/mB2jJgQHoilaYn4375TzFjo0LkSlNe3DimVX36ZGEmRQXj1vvVG4zsXLhczkqPw+I1L8NDb+rI7LR1duHD1nDXFnvdX9iDg8+AnEqBNKodao8X+05ewbnaqo7tFCCGEEEIIGUOc5w6IjCnVTe342yd7ceZyDQDA1YWLhVMnOLhX9hPsKzKakBio1jCgX6WRXWBIT7bSwvRkgD792NsPXm+2Ltfda2Yh1N+wMvLA2csD7u/jn3LR1aOvBTYnNRZ/XD/fbNublqRhwRT95yqVK7D35EWL+21rPp4eCPLp/9BBVJDvuAn+AjA5sdfX9PgIo3SSZ67U2LJLDvX5/tNMysqpE8Jw9+rZZtv+btUMTIsPZ15/dfCszfs3VOxAwI6cQvx7ywEmTSghhDgbnU7/N+aBN7cz9TXjQv2RHBXk4J7Zz+Jp8RB66MchcoUSv56vGLB9cVUjqpv0dVOFHrwhZTGhMaJpcWZKRsSEDu/Bz9HKkjHi7SsyEcgaT/fe21kqOtgX7z28sd/Dfb3mpMYaBWVrrtYFN8We91f2smqGoU/Pf/0Lvsg6ja5u8zWZCSGEEEIIIWQoKABMrKJE3IwH39qBO1/+Fr954kOs+9vH2HuyGAAgdOfh6dtWIirI18G9tK/lrMDM4fySAeuknbpUzdS/C/P3RtoQarDevWYWM5FoiguXi9Ws9IKF5fVm+yLrVmDfqUvM69+tmgHOIHNDmxZNY7ZzWPW9nMFjmxYbTSq5ubrgzxsXOrBHzispwlDHrNnEyumxQKFS43iRYaL9hoXTBj+/FxrO7zNXaiDrVgzQ2v6Wpyfh/mvmwu1qysBtR/Ox6okPsPapj3D3K1uZVTWEEOIoP5+6iAfe3I7b/vsVFj/6Du586Vucv1qTNjzAG8/dtWbQNK5jiQffzSiIezh/4CDWYVaQa9HU+CGVaKAxomlxYf79as0GeAv7ZQQh+iBx4gjGiPesmzNg3WCeq4tR3WV5z8DBT3vdX9nLn65dgGVXH8Ls6lHilW1HsPCRt7Hxmc9w7+vb8NbOHAf3kBBCCCGEEDKaUQpoYhUdsh5km5jYWTI9AY9tWozwAG8T7xrblqUl4sVvD0GhUqOhTYr8UrHZlGZHWLXdlmckgjvYjBqLiwWpzFKjg5ntTnkPKuvbEBfWf/XDqUvVkCv0Ey9eAnekWzBRkpYQARcuFxqtFmeu1EChUoPv5hyXlpWZyQgP8Mah/FJwOcCytKRxtcpoKDxYq6K7lWOzluypS9XMyiVAX/9uMLNSDCmVVWoNci9WMRN1zuKedXOwasZEvL/7GLLOXIZao0VNs2TAVTSEEGIvNU0S5JwvN/oa380VmxZNwwMb5sGd55ia8460IiMJe3P1D0pmF5YPOHZi1/8d6gpGGiOa99cblyIjMRLnSsXwEwlwzZxJTpeK3FkIRjBGtOTz9mQ9pDBAPBeA/e6v7MWD74ZX7luPE8WV+GjvCZy9UguVWoMScTNKxM3QaQc5IIQQQgghhBAyAOe4AyejHp/niqggX0i7FWi/+qQ1oE/NVVTZgKduWTaklHVjgY+nB+akxjATd4fOlZicoNDqdCOa3LPEhLAAo9d1bZ0mJ/eKqxqY7cSIQItW5AjdeQjy9UR9ayfUGi1aO7uMnuR3tEmxoZgUG+robjgNjVaL+tZOSLsV6FaooL06sVQ7DoKFV2qamG1/L6FFE73+XkL4ewnR2tkFAKiod776gN9nF+CD3cf71bz29xJC6D5+0p0TQpyTSMBHRKAP2mVyJrWpQqXGlwfOIK+kFs/duQYxIeMr9e7c1Fim9qesW4FjFyqwZHpCv3ZldS0oETcDAPxEAsxJjbF6X8bzGHFpWqJRCYzxrkepQn2bFPIepT7QezX2KOnqtunP5Q3hoQBnur+yBpVag9e3H8X32YXoYQXXXV24+jEoPZRACCGEEEIIGQEKABOrmBwbit3/uQuAvs7X6cvV+OTnk7hQUY/Gdike/2A3dv7r9+NuJfDyjCRm8uFwfikevWFxv3R5+aViNLZLAehT0qXGhFi9H15Cd6PX0qt19/qqazHUDpX1KPDlgTMW7V+t0TLbbZ1yp5rcI0BDmxS7TlxATmE5Ltc0QaFSO7pLDtEuM0xgmqoPbU6QjycTAO6w8SToUB06V4Jnv8xiXmckRuKOlTOQlhhBwV9CiFO4aUkablqiT7fb2C7FkYJSfPLTSTS2S1FU2YDH3t+F7/5xu0X1SMcKN1cXLElLwPdHCwDox4imAsDsANbStEQm3b810RhxfCuqbMBPJ4txvKgSlQ1tA6ZUtpWhrsx1lvsra3hjRza2/HIWgP44rJ2dik2LpiE5Msgmv++EEEIIIYSQ8YUCwMTqRAI+lkxPwJzUGNz6/Fe4UtsMhUqNQ+dKcOvyDEd3z64WT4uH0J2Hrh4lapslOF9RhylxYUZtDrFqu9nq6fS+gaDeFTh9yXoM9U0vVTfhUnWTyXYDkQ1Su4vYj04HfPJzLj756SSTtrGXC5cLoTuPmXBXqjT92ow17ADwUGoostu2sTIcOIPeFKIAMG9SLN568PpxFUQhhIwuwb4ibF40HZlJUbjx2S+gUKlRIm7GpZompLBSEY8HKzOSmQBwdmEZVGpNv4APe4y4glX71JpojDg+dXUr8Z+vDmDvyeJ+33NzdTE6L7p6lFCpNfbs3oCc5f7KGnafKGK271s/l+pQE0IIIYQQQqyKAsDEZtx5bliWlogrtfrUdX3Tk44HAj4Pi6bGM5Mrh8+V9pugOFpgqJ1sq8k9bZ/6Ua5masJxMPLAkZsLPa3uLF749iC+OZTHvJ6dEoPrF0zB5NgwhPiJjNp+fTAPL3x70N5dtCv2CpOhLHBh//442/ndcHV1CwBsXjydgr+EkFEhLtQf0+PDkXuxCgDQJJGOuwBwRlIkQv29UN/aCYmsG7kXqzB/chzz/dpmCYoq9WmXQ/29kJEUaZN+0Bhx/FGo1Lj39W0oLK8DoH8ocP3cSfjNjIlIigyCd59V4Y+9vwsHzl52RFdNcpb7q5GSdSsgufpwoguXi5sWpzm4R4QQQgghhJCxhgLAxKaEHnxmmzdO01gtz0hiJigO5ZfgoesXMN8rqmxAdVM7AH2t2rjQ/jXXrKGbVVMKALw9PUy2E3oYnvZfNDUez9+9Zsg/y51n+cpKYjtnLtcYBX9vW5GJR29Y5LgOOQEf1nk/lNXO7N8fX5Hp3x1HYV9Xfcz8XhNCiDMa72NELoeDZWmJTCrlQ+dKjALA7BWMy9OThpwm11I0Rhx/Pt9/mgn+cjkcvHzvNSZTkDszZ7i/Gin2in83VxeIBPwBWhNCCCGEEELI0FEAmNhUJ6uO2HgNTsybFAtfkQDtUjkqG9pwsboRE6P0q1yMUvul2+7p9PrWTqPXPp7uJttFBPow200SKQR8qiE6Wu3ONaSUC/P3xp+une/A3jgHdvC2rrXD4veJWwxt/UQCq/ZppNjXVXNpOwkhxBmxx4jewvE5RlyVmcwEgI8WlEGj1cKFq1+By67/u9KGKxhpjDj+sNMOr8hIGnXBX8A57q9Giu/mCpGAD6lcgR6lCkq1Zlw+DEMIIYQQQgixHdM5vgixkhZW2ucAb6EDe+I4bq4uWMqaWGFPShwp0E/ucTkcrMi03QRFWV0Ls+3qwkViRJDJduz0i+X1bZB1K0y2I86vTGz4zDOSIvvVFRyPUqJDmG2pXGEU2DWnplli9HvQN8Wgo7Gvq00d4y/NPiFk9GpmjRGDfDwd2BPHYa9ObO3swunLNQD0ZVPyS8UA9OmyJ8WG2qwPNEYcX7q6lczqWEBfHmQ0cob7K2sI8jGUZGkeh+WSCCGEEEKIY1379KdY97ePcc+r3+GNHdkoKKtzdJeIlVEAmNgUOyAR6O3ck3t9a54pVWqr7Ztde6p3gqJE3IzSq0G6jKRIhPp5We3n9XWiuJLZnhwbBqG76VUbmUlRTIq/HqUKB85esVmf7CXrzGX89cPdePLjPUaTQ2MdO6WjLerCslNRqjXaQdv3KIf/+8SuGahUaYa9n7SECHiyUo7mnC8f9D2/str4ewmdLgAcyAqatNDEISFkFGlo09cwd3Xhwt/LuR8SZI8RFVYcHwL6VLa9DuXpxymHzpVAe7VYva3rl47XMaJKrcFn+0/h4Xd24l9f7MeV2mZHd8ku+qb85thgjGgvjr6/sgb2wy9NEqkDe0IIIYQQQsajzq4eVDe1I/diFT79+SRu++9XeOS9HyGV0wO/YwUFgIlNsZ9kDnTy1R0efDej2ktVje0DtB6azOQohPjpn/AuFbegVNxilNpvJJN7Z6/UDPh9cUsHDuYZAp9zJ8WabSt052H1jBTm9Qd7jqNdKh+0D1fnKJ3OF1mn8ZcPdmHf6Uv46eRF/PndH7D1yDlHd8suAliT6TVNA5/LGq3WomAoG/t3pb6tc4CWwKlL1fjh2Pkh7Z/Nz8uQdrl6kP/LQHiuLlgwxVBf8dtDeVCpzQeUVWoNvj1sOF+WpiXYJJg+EuwHa5o7uhzYE0IIsZxE1o2eq4GoQB9Pp7u29sUOUEtk3WjttN71dlVGMrN9OL8EWq0OR4zSPyebeptFaIxo3uMf7sZr3x/F4fxSbM8pxG+f24LiqkZHd8vmfDw9jLLCDDZGbJbIcKGy3tbdGhZb3l/ZCzuTS7OExnGEEEIIIY5UXt+Kf36xH09/tg+Xqpsc3R27eGDDfNx3zVwsnhYPvpu+WuzBvCv4v09/cnDPiLVQDWBiU43t7ACwc6/uAIAZydE4mKdf0fDlgTNYmpbA1GJjk8oVRgGwwXA5HCxPT2LqvB06V4LD+foJNzdXFyxLSxx2n78+mAdPdz7uu2ZuvwnUjq4ePPnxHma1itCDh2vnTR5wf3eunol9py9CKlegvrUTD7/zA/5791qE+pt+gj6/TIzXth3F7SsznaqGmFanwwd7TvT7+vu7jmPzoukO6JF9pSdGIvdiFQDgXIkY50prMT0+ol+7boUKz27JwvGiCuZrlqSgmxAWwGyfulSNxnYpgn1F/drtOn4Bz399cMBA62DSEyOZlR17cotw+8pMkys6lGoNdDodM2Ax5Y6VM5B15jLUGi0qGtrw7JdZ+MdtK/tlAFBrtPjXl1mobGgDoJ/4vmPljGH/H2wl0GjlCK0AJoSMDo3thpVuoyH9c1JkIPxEArRdDXj+b98pPLZpscm2Qx0jxoX5IzUmBEWVDWiSyHAovwSnL1cDAFJjQhAX5j/sftMY0bTzFfX9ssIoVGr8b99JvHTPNQ7qlX24unCRnhDBjBF/OHYBt63IhJegf+3n2mYJHv9wt1GdaGs+/DBStry/shcaxxEy9mQXlqGElVVi8+Lp8PTg49iFClyqNjxodMOiaSavvcS+th45B9nVVW6eAj4zV/R9dgE6ZN0AAIE7DzctSXNYH23pSm0zcgrLmNfzp0xAYkQgyutamb+pADBvchySIk2XCSHDc+xCBb7IOo1Qfy/MSY0dFQ+ujXUarRYPvLmdKRf364Vy7P7PXRDwTWdIYutWqPD1wbMDtokM8h3x52yLaxb7HrCqsR33vb4N4pYOHCkoRYm4GQnhgSPqM3E8CgATm+lRqpiVAV4Cd4sumI7222XpTAC4sLwOd7zwDdbNTkVkoA8AoKFdipMXq3DoXAleu3/DgCsl+lqRYZig2J5TwKQ+nJMaA1+RYKC3DurDvSdwpKAUa2alIC7UHzodcLmmyejnAMB96+YOWos51M8L/7h1Jf764W5odTrkl4mx8Z+fYUVGEtITIhDg4wl5jxIV9a349UIF8kpqAQA1WySYFBvqNBO5UrnCZH26Nqkc3QoVPPhuDuiV/Vw3fwo+yzqFrm4ltDodHnn3R9yzbg5mTYxGkK8nWjq6cOxCBbYePoeKhjYE+Xiio6sHCpUaTRIZvj9agI0Lp5rd/4IpcXDnuaFHqUKPUoU7X/oWd62ZhYlRwdBodSira8GOnELm/Jg/JQ45hUNbZdxr/ZxJ+N++k2jp6IJUrsDvXvwGGxdMRVJEEHhuLmiTylFYXof9py9jw7zJ+NO1883uKykyCPeum4u3f8gBAPx4/AJKxM3YMG8yJoTqg9pl9S3YmXMeF1k36I9sXITwAO9h9d+WAo1WjtDEISFkdGBnLAhw8hIhAODC5eK3y9Lx5k79344vD5xBY7sUC6dMQKCPJ5RqDaoa2/U3ybXN2Pmv38NvCGO75elJKKpsAAC8tPUQU1rBGhNBNEbsz9zfy/ESgLt5aToTAG6WyHDnS9/ivmvmIiU6BCIPPmqaJfgl7zK2HS2ARNaNyEAf1DRLAADZheUoqmxAakyII/8LDFveX9mDUSaXcXL+ETLWnSiuxNcH85jX1y/Q31OfvFSFz/efZr6+fu7AD10R+9ieXYjLNfpVfslRQUww5Ydfz+N8hT4DRkJ44JgNAFc1tjHjWwCIDvFDYkQgapolRl+PCPShALCVyboVzHhMqdZQANgJtHbKmeAvALR0dKG+tdNoAYw5XT1Ko98ZU5ZMTxjx52zra1Z0sC+unz+F+b+U1LZQAHgMoAAwsRn2JIqplYHOKC0hAn+6dj5zoSssr0Nhueni52/syMbslBiL0xZOiQtDbIgfKhrajCbcVqSP7OK/ccFU/HzqIq7UNuPK90fNtrth4TT8dlmGRftckZEElUaD/2w5gK4eJWTdCuzIKcSOnEKz78lIiuy3itKRvIXumBAWgLK6FqOvp8aEjPngL6BPKffP21fhiY/2QK3Rok0qx/Nf/2Kybai/F97900Zsy85nblaf3ZKFIF9PLJgyweR7/L2EuGfdbLyxPRsAUNMswdOf7evXju/mikc3LUJ8WOCwA8AiAR/P37UWD729E3KFEvWtnXjLzMDqq1/O4vr5UwYM1t69ZhbkPUp8uu8kAKC4qtFs2kcuh4MHr5s/YDDckdiT6ewVdYQQ4syMSoQMEnR0FnesmoHC8nocKdCnmM06cxlZZy6bbPv+ruN46pZlFu97VWYy3tyRDa1Ox4wRuRzOiNI/AzRGNGdiVDD4bq796jlPjg11UI/sa+HUCbh1eQYTOL1S24w/v/uDybYzkqPw2v0bcPcrW1Fc1QhZtwK3v/A1Dr1yv1OsXLPV/ZW9sDNkNXdQAJiQscDTg2/ydd+vDyVbCLEd9ufA/ozY22P5sxL1+Vve+/8WevD6tBu7x4CQXoHenpgSF8bEAeLDAxAd7GfRe124HJOxD6VaY1HZHEvZ45olcDf8/nOcu1ITsRAFgInNdHT1MNvsGp7O7s7VsxAd4of3dh1Dqbil3/e5HA4ykiJx05K0IdesW56RhA9ZaYkFfB4WjzAl3uzUGGxaNA2vbT+KE0WV/b4f5u+Nu9bMwvXzpwxpv2tmpmBybCg+2puLX85egVyh7NdGwOdh/pQ43Lh4OtIS+qcXdrS/37ocj7z7I5OyMcBbiCdvtnxCdrRbnp4EX5EAr39/lHkSjM1XJMC62am4Z+1seHrw8cjGRZArVNh17AIE7jzMSI4acP+/XzUT7m5u+GjvCeYY9+K7uWLh1Am4f/08xIb4jah2L6CfgPzsrzeZPc8B/VNu6+dOGnQFEwA8dP0CZCZH4oM9J5BfKjbZJjM5Cveum4OMxMiRdN2mfDwFcOFyodFqIbma7oUQQpxdR5fhejUaVukB+lXAr96/Hp/tO4WvDuaZTIUr4POwcOoEXDfEMVeovxfSEiNw5rKhZm96UqTZ1MqWojGiaaH+XvjzxoV4+bvDzGrr1JgQ/GHtbAf3zH4e27QYsaH++GjvCaMUz72ignzx2+XpuGHBNHC5HLx2/7V48uM9yCupRUZSpFMEf3vZ4v7KXvxEhjFrJ+vemRAyeolYk/BCdx7zAJSQNaHuznMbsGwRsR/25+XpbvzZMV/3GLvBT1HfBxau/r/ZxwIY28eAkF4cDvDewxux+0QRNFod1s5KsfghVl+RAFkv3tvv64fzS/HwOzut1kd7XLNaWNm6hpLVijiv/wcAAP//7N15YFNluj/wb5a26ZLuTfeUttAFWspay+4AAiICgjLioOCG+tNxm4sjzr2jM3fude51Rp2f6IgbOqPOiKBAFVEZZF9kLaVACy3dl3RLm6Rp0ja5f1ROU5p0oU2z8P38dXJy8ubh9M3LSZ7zvg+vOMhuLFOjrpaYmDshCXPGJ6Goqg4F5bXQtBjgKZUgPFiOVGU4Av28r6vdx5dMh6/ME6/9NAtj9oRR3Qbp65Ucq8DbT9+F6gYNzhVXoVHTAg+pBPERIUiLj7Bax7g/lIog/Of9t+KFe+Yir6QaFXVNMBjb4efthYhgOdLiI+EplQw6fnsZPzIGW393P368WAqxSITMFOV1/+1c1aSkWHz8wipcqW5AfpkKmpZW+Mq8EBkiR3p8VLeLGQ+pBL9bvQAPL8xCeV0TZJ59z5S+Z84ELJ85FjmFlaisa4LJbEZ4kBzpCZHdfhxUKoKQ8+66Qf1brvbzmkYN8oqr0fjTuBIs90FSTNiAl2ieOiYeU8fEo6q+GRdKa9DQ3AKIOtsbHReBiGDnX7lAqzegw2RydBhERAMisrhKtEwGOzuJWIwHF2bhvnmTkVdSjTKVGi0GI3y8PBEbFogUpaJf/3da8/6/3Y0nN3yBfTmdddgWZqYOScy8RrRu5ewJyBo9AmeLKhEs98GU0SOcapbycFg+YyyWTkvD+ZIaFFc3oNXYhkA/b8SFdy7/aCkiWI5Nz63EuStVkPRxnna+vHZAcWx6buWAY7dkr+9Xw6G5xSLpyxkWRG7Bckal5Swsy3EpwNd5bqK50VkmSixnvd44M4BtzVi/dgYw+yzdGPy8vZx6yffhGLMsE8BhTlLChwaHCWCym/jIEGF5tfwyFbYdysVSF6pzIhIBiVGh/Vrrv786TCZsO5grPB7ojIu+RATL7ZK08vbywKSkWKeeCWlLsNwHCyYPbglFdxAfEYz4iP4tXRITFoiYn+pe94eXh7TP2cJDKTxIPqTLykeG+A96lpUjdJhMeG3LXuGxs9TjIyLqi2VyaeexC1gyNR0pStepK+YhlWBcYjTGJUYPWZulqkYczL0CAAj088aCzKG9duE1Yk8DuTZyVxKxGOnxkf1e/jrNCZfJtvf3K3tp1LTg/Z1HhcfJMa4zBhKRbZaJM7m3zGJ/1w/yzrSKwo3OMlFy7exta/vdTY8ZwLaWLHfjc0DkSoZjzOpW0jPQ+SfGUN+YACa78ZV5YtmMsfjHns6aoi9+uAs7Dp/D5GQlIkP8kRIb7lI/9g2FLftzcKW6AUBnPTRnWxKPiJzb4bwrqGrQoLi6AftyLqOkpmtpbWe+S5GIyNLkFCVGx4XjfEkN1Fo97vvjJ5iRnoC0+EgoAv2QmaK84e42fnPbQWFFhxU3j4OPl2vMYCRyNFf5ftXeYcL3J/Oh1upRUF6LPacvCatk+Xl7Yel017lRmohss5wpeSPWlHU13WfT9T2zzt1cO7P3at9kzWoi5zQcY1ZdU2cCWO7j1aMeOLkmJoDJrp5ePhMNmhZ8e/wiAOBkQTlOFpQDAO69ZdINlQA+fbkcr2/ZD6CzjvBTy2Y6OCIicjUbth1EXnF1t30SsRhP3DEd8yYlOygqIqKBkUrEeOWRxfjV29txsVQFQ1s7dp8qwO5TBQCA1x+/Az8bN9LBUQ6fv39/Art+ulZWBPphzfxMB0dE5Bpc6fuV3tCG59/9qsf+ILkPXn7wNsQOYPUdInJeft3qMHpa3T8UP6ibTGaU16mhatTCy1OKhIiQ6263UdOCyvpm6FqN8JCKESz3RawiEGLR9a9N36BpQXF1A/x9ZBgZ3X1VPZPJjKKqejTpWpEYFTLgMl0mkxnF1Q2ob9ZBIhEjNizwum8ctKyh2e1vJ7OeWHE3UokYvjJP6FqN8PKQCrWpbe0fKJPJjLJaNRo1LWjvMMHfV4aIYPmgZ8EPZR+wpqZRg6r6ZphhRkzo9bfdYTKhsLIeaq0e/j4yxIUHwdvr+srFDIehPq/2GgfsMWa5iuEYs67OAI4Icr2VEsk6JoDJrmSeHvjftbdj2Yyx2HH4HI5fLO22lMCNoLmlFZ/vPYONXx2Boa0dALB20RSMTYhycGRE5KrEIhFGRAYjKzUOd80ah4TIEEeHREQ0IDFhgfh4/Sp8few8dp8swOnLFdDqDY4Oa1iVqhrx3tdHsf3wOQCdN/T8/v5bXaZ+KZGjuPr3Kw+pBGPiIjA9PQF3zcoYcPKDiJyXrRnAljO1/L37l/z67kQ+3vjyAADgT48uRnKsAvXNOmza9SO+O5GPmkaNcKxUIsacCUn49d2zEeLv22u7ulYj9py+hIO5RTh9uaJbO0KMPjLMm5SMB269CdGhAb22t/IPf4NWb8T9CzKxaMoY/OmzH7D1QA7aOzpXNkmOVeCVRxYjLjwIRy+U4I+f7hZWbvCQSvDQwiw8evvUPs9Hg6YFH3xzDF8dPY9GTUu351KUCqycPQFLpqZjIDkgy5mttmpr9vfvZUtlfRNKqhsxIjIYkcHOl1Dx95VB12q0Wg9Y12q8rprVF0pr8NG3x3HkfLGw2sVVYpEIqXHhuHncSCybPhahAb33V0tD1Qeq6pux9tXNAIA1CzKxfMZYGNs78NkPp5F9JA/5Zapux48bGY11K37W71IYekMb3tt5FFsPnO0Wp4+XJ+ZMGIXHl0zvVzvDZSjOqz3HgaEes646W1SJ37y/s9djHls8DQtvSu1Xe8PB3mNWq7FN+MyGBvb/s0nOjQlgGhZZqXHISo0DAGhaDKhr1rn9j1vf/HgBXx3Jw+nLFdC1GoX9i6em4ZF+XNwSEV3r5YcWQSTqrIN8vXfhEhE5Cw+pBEunpWPptM6lT+uadGjS6Ye0zrszemvHIRy7UIKzhZUwmc0AOn+4Xb9yLqaMHuHY4IicmCt/v/KVeeLzF9dA7u2F8CA5xGL3n6VCdCMK8JVhVHQYACBWEWh1vzI8qF9ttbQaUarqLPmjUmtxpboBL3+6u0dCDehcZv7b4xdxpaoeH7+wqtfviiq1Fv/+Qe9Jj+aWVmzZn4Pdpwrw50eXYFJyrM1jK+ubodbqUVLTiHVv78DenMvdns8vU+E/Nu3EI4um4qk3v0Rbe4fwXFt7B/664xDS4iMxPS3e5nvkl6nw5IYvUN3QM/EDABdLVXjxw104fbkCv713HiRica//vqvCg+TC30UR1DXTMTywa/9grkvf33kUb24/hA6TCVKJGE8vn4V7b5l03e3ZQ0qsAn4yL4QHdZ/pmRyrgL+PDJEhA0taf/DNMbzx5QHhGvdaJrMZecXVyCuuxqZvfsTDi7LwwIKb+mx3KPtAW0eH8NkqV6mRX6bC+ve+RmFlndXjz1yuwNpXN+Pj9auQENX7zfdavQH/7y9bkFNY2eO5FoMR2UfycCC3CIuyRvfaznAZqvNqz3FgqMesq4xtXf3AlhaDsdfnh5u9x6zaJp2wHSz3ue52yLnw12MadnIfrxuifkRRVT0OnrsiPPb19sSji6bivnmTHRgVEbmyuH7+WEBE5IpCA3wHNAvAVZ0sKMOZyxXC46iQAPz2vnlM/hL1wZW/X4nFIiTFhDk6DCKys0A/b2x5aU2P/cFyH6v7+2vLvhwcyC1Ch8mEeZOSsWz6WMRFBEGrN+KH05fwdvZhmMxmFJTXYsv+HPxizkSbbcVHBGPMiAi0GtsxMSkGKcpwRIX4w0MqQa1ai7ziamw7lAtNiwFqrR7PvZONL3//QJ8zQbfsz4FWb8CdMzOw4uZxkErEWLcxG4WVdcgprMSzf92OQD9vPLF0OiYnK3Ekrxj/+fF3AIDth3JtJoDzy1RY++pmIfE9NiEKS6enIz4iGG3tHTh9uQL/2HMKaq0e2w7mwkMiwb+vuqVf53VaWjymWXnfGWMTMGNsQr/asKWgvBYbth0UEqHtHSa8tmUfZqQnYERE8KDaHkqvP36H1f1v/HLZgNv67kQ+/vJFV2mGZTPHYmZ6IiKC5RCJRGjS6lFQUYsDuUU4kleMFoMROn3fCTZ79oEzhRXYceQc6pp0SIuPxKq5EzFmRAQ6TGacLarE//9iP+qadNC1GvHm9oP482NLbLZlMpvxzFvbhOSvzNMD98yegOnpCQjwlaGirgk7j53HruMX8fHuk/2Kz57scV7tMQ7Ya8yKCvW3Oht7/9lC5F6p6u9pHFb2HLMAwPjTyjpA5zLd5B6YACayk5RYBXy9PZEaG46s0SOGfHkvfx8ZokMDEOTHO3KIiIiIXEVKrALF1Q1IjQvH3PFJuC1rNDykkiFrn9eI5K7s/f2KiMhZ7c25DLmPF9bfMxe33dR95mBSTBjqm1vw2d7TAID9OYW9JoABYOMzK2xOzLg1MxVr5mfioT/9E1d+qge6dX8OHri191maWr0BTyydgYdvyxL2zRk/SphV6eftiU3PrRRqni+fmYFXt+6FTm9EQXmt1TZNZjP++5OuWc/33jIJz951c7danzelxmHx1DF45NXPUapqxNb9OViUNRrjRkb3Gq+9XSyt6TELtsNkQkF5rVMlgIfSx7tPCNtPLJ2OBxdm9ThmcooSv5gzEfllKvxjzymsXTSl1zbt3QdOXSoHADy4MAuP3T612zV5fEQwvDyk+PU72QCAA7lFMLZ3wNPGdXv2kTz8eLEUQOdNam8/fVe38hQjo0MxKyMRcycmYf17X3ebBTvc7HVe7TEOAPYZs6JCAqz2vxq1xmkTwPYWGtA1q/h4fimaW1oHXbObHI8JYCI7mZUxEgdff9Iuy3t99h+rb4hZ1ERERETu5sllM7Hu57Pt0javEcmd2fP7FRGRM/OQSvDK2sWYMmaE1edvHpcoJIBL+ljSFECf1wqhAb5YMz8TL360CwBwPL+sz2SKUhGEh65J+AXKu27SuX/BTULSBwBEIiBE7gud3ogmXavVNnccOoczhZ2rpmSmKHskqK6KCgnAb1bdgkde3QyT2YyPvjvu8ARwXLj1JK9S4Z6repnNwKXyriWU509O6fX45FgFXlq9oM92h6MPPLZ4ms36szdnJEIsEsFkNsPQ1o6q+marK7OZzGa8+9UR4fHa26Z0S/5aumViMspUamG2tCPY67zaYxwA7DNmUU8BvjLMSE/Agdwi1DXp8PhftuKXd8zAxKSYfi+tT86HfzkiO5FKxHb7cYI/7BERERG5JnvWcOc1Irkze36/IiJyZrfdNNpm8hfoTNJcpdUbhuQ9U5ThwnatWtvn8V4eUlybP7K85pF59rz+ufq8rZmQWw+cFbZXz8+0mqC6Kis1TqiBeexCCVqNbX3GbE8ZiVFYPmNst30rZ09AilLhoIjsSyTq/H/6qjKVekjatXcfiA0LtJn8BTqXcbastaprtb5k9YWSGpTVdv6bvTykuHNmRq/vGx0a0Ovz9mav82qPcaC/BjpmkXUvrV6AzBQlAOBsUSUe/vNnmPHUG1jx+4/wwCv/gMFimWhyDUwAExERERERERERETkhqbT3n2/9vLtuADMPUdlGL4tEjSN+8G/QtOBsUWctVR8vT0xOju3zNeNHdc5M1LUacbbI8Uu4/va++dj47Ar8+u45ePdXP8fzK+c4OiS7Sk+IFLZ/9/dvceBs0aDaG44+0J8yLN0/X9Y/YEfPFwvbGYlR3V7jbNzhs2WNo8csdxEa4Iu3n7kLTy2fidAAXwCdf/f8MhVOFpSjw2RycIQ0UFwCmoiIiIiIiIiIiMgFeXr0ncSypa5Jh6KqelQ3NENvbIOxrXMWXuNPtUEdJb9MJWwrwwP7tYJKRJBc2K5r0tklroHKSo1DVmqco8MYFo8smoqTBeVoNbahqr4ZT7yxFYlRoZg7MQnTxsQjPSGy15mm13KWPtCf9y2u6Vp6PT4iZEje116c5bxeL2cds9zFhdIa/PqdbJRY9OnIEH+MiAiGn8wLUsn1/39DjsEEMBEREREREREREZELEmFgy+O3tXdgy/4cZB/JQ15xtZ2iGpyaBo2wXavW4Zm3tvX5msr6JmG7Udtil7jItozEKGz45TL84ZPvUVzdAAAorKxDYWUdNmYfRligH2ZlJGLxlDRkJFqvj2vJlfqA5XtZ1rx1Rq50Xq9yhTHLHZjNwG/e3ykkf7NS4/CrFT9DUkyYgyOjwWACmIiIiIiIiIiIiMjNVdQ14Zm3tnWfBagIwsjoUAT4yoTZgBq9AV8fPe+oMNFqsYRrfbMOe05fGtDruQSsY0xOUWLzb1fj2+MXsfPHCziRXybUdq1Va7FlXw627MvBlDEj8MI9c6FUBNlsy5X6gEbXVXtb1o8ZtY7kSucVcJ0xyx1U1KlRWFkHAIgIluP1x++At5eHg6OiwXLuEYmIiIiIiIiIiIiIBsXQ1o6nNnyJSxW1AIAUpQIv3HOL1dmYV6obHJpM8bSozRoRLMeU0SMG9PpUZfgQR0T95eUhxeKpaVg8NQ1avQHHLpTg8Pli7D1zWVg++EheMR545Z94/9/uRly49SSwK/UBmUX92VYnv/nAlc6rK41Z7qDF0CZsTxwVy+Svm2ACmIiIiIiIiIiIiMiNZR/JExIpwXIfvPXUnQjx93VwVNZZxhXo542XVi9wYDR0vfy8vTBnQhLmTEjC83fPwfZD5/D6F/ugaTGgVq3Fnzb/gDd+uczqa12pD/j7yoRtbYuhlyMdz5XOqyuNWe7AV+bZ9WBglQXIiYkdHQARERERERERERER2c+xCyXC9oLMFKdOpCREhQjbZbVqdJhMDoyGhoKHVII7Z2Vg/cq5wr79ZwvRpGu1erwr9YHwILmwXVzT4MBI+uZK59WVxix3EBrQdX4bmllH3V0wAUxERERERERERETkxho0XT/oRwT5OzCSvsWGBQr1YXV6Iw6du+LgiK7PpYpafHciH0WV9Y4OxWlMS4vv9riqvtnqca7UB9LjI4XtvOJqp06qutJ5daUxyx14eUgRLPcBAKjUWgdHQ0OFCWAiIiIiIiIiIiIiN+bj1bW8p0qt6fXYqvome4fTp0VZo4Xtj747DpPJ7MBoBm7DtgO486UPsW7jDix/aRPe+fqIo0Oyq/4mPXWtxm6PpRLb6QlX6QMTRsVALOpcM1et1eP7kwU2jzWZzcg+kjdcoVnlKufV1casa3l5dNVbbjU6d23oqxRBfgCA6kbrN2aQ62ECmIiIiIiIiIiIiMiNjY4LF7YP5BbB0GY9IXG5og4vfrhLeKzRO6am6b3zJiE2LBAAcCK/DK9s3tNrknHP6Uv45w+nhyu8Xl0orcG7Xx8VHpvMZvx1+yEUVtY5MCr7UWv1WPmHv2Nj9mG0GttsHmcym7Ex+7DwOEjug/jIYJvHu0ofCAv0w4LMFOHxW9sPolHTcwldk8mM3/3tWxzILRrO8HpwlfPqamPWtSJDAoTt/DJVj5sfnFFYQGcCWKc3QuPk9aypf6SODoCIiIiIiIiIiIiI7Of2KWOwadePMLS1o6SmEc9tzMazd92MuPDO5WBr1VpsO3QOm3Ydg67VCF9vT+j0RjRqWrAvpxCzMhKHNV4fL088f89cPLXhC7R3mPDpv04ht6gKd87MwOgREZD7eKFRo0fulUp8deQ8zhZVQioRI1UZjozEqGGN9VqXymt77DOZzSisrEdiVKgDIrIfk9mMdRt3IL9MhfwyFT7fn4Pbs8YgM1WJ6NAAyDw9UKvW4mKZClv35yCvuFp47Zr5kyER256f5kp94OGFU/CvU5eEz9dDf/4MjyyaivEjo2EGcKGkBu9/cxQ5hZVQKoJQqmoc1vgsucp5teeYVVRZj7NFlT32l9Z0/V3OFlZCek3/DAv067GMuS3xEcFIjlUgv0yF+mYdntzwBdbMz0R8RDCM7R0or1XjQG4RHr5tChSBfv1q094s6wCr1BrIfbwcGA0NBSaAiYiIiIiIiIiIiNxYTFggnr3rZrz86W4AwN6cy9ibcxlyHy94SqWob9YJxz61bCb8vL3wX598DwB49q/bsPGZFZiUHDusMU9Pi8frj9+B9e99BU2LAblXqpB7pcrm8SH+vtC1On7W2sjoMKv7EyJDhjkS+xOLRFg1dxKKqxugUmtRq9big13H8MGuY72+bu2iKVg9L7PP9l2lDyREheCPDy/Cuo070N5hwuWKOqzbuKPHcWnxkfjNL27Byj/8bdhjtOQK59WeY9bxglL89ye7e33/7YfPYfvhc932TUuL73cCGACeXzkHj772OQxt7TiRX4YT+WU9jokODcCa+X1/FobD1RnAQGcdYHe7YeVGxAQwERERERERERERkZu7+2fjERrgize+PIDi6gYA+GmZTwPEIhEmjIrBY0umYVJSLMxmoLxOjU//dQqeHhKMGRHhkJhnpCfg7+tXYWP2Yew5fcnqMrAJkSFYMi0Ny2dkOMWMtdFx4Vg9fzI++va4sO/h27IwMto9kymzMhIxOeVBbN57BjuPXUB+mcrqcb4yT8wcm4iVsycMaCapq/SB2eNHYcOTy/Haln09zoGvzBPLZozFE0unQyQSQSwSwWR2bO1dVzivrjhmWZowKgbv/urn+J9//qvb7PerQgN8hfrRziDY30fYVmv1DoyEhopI3VjrnFW+3UTpttdhbnf+9d2JiIjcTciE+fBLyHB0GORG6o5lQ1d2wdFhEBER3XB8laMRmrnI0WGQG9EUnUHDqe8cHYbDmMxmFJTVorimAYa2dgTLfZAcq7C6DKlKrUVpTeOwz/61Rqc3Iq+kGqpGDTrMZgT5eWNkdCiiLGptOpMLpTUoqqrHyKhQJMcqHB3OsKlu0KC4pgFqrR6txjb4+8gQHiRHcqwCUontJZ/7w1X6wKWKWhRW1sPQ1g5FgB/GJkbBV+bp6LBscvbz6qpjlqXCyjpcrqiD3tAGH5knlIogJMWEQSx2ngTwO18dwZvbDwIA/nft7Zg/OaWPV1wfsYcnYpc8bZe2qTvOACYiIiIiIiIiIiK6QYhFIqQoFUhR9p2UVAT6OU19Sl9vT2SmKB0dRr+lKsORqgx3dBjDLiJYjohguV3adpU+MCo6DKNsLAXujJz9vLrqmGUpMSrUqZdUPnelCp/tPS08doYZ1DR4TAATERERERERERERERER3SA2Zh9GWa0aZSo1zhRWCPsXT01DTFigAyOjocIEMBERERERERERERERkROoamiGeZA1gkUQITLEf4giIne0ed8Z1DXphMcSsRh3TE/Hc3fPdmBUNJSYACYiIiIiIiIiIiIiInICd770IbR6w6DakHl64NibrLNKto2MCkVSjALB/j4YFR2K2eNHQakIcnRYNISYACYiIiIiIiIiIiIiIiK6QWx8doWjQyA7YwKYiIiIiIiIiIiIiIjICdy/IBPG9o5BtSGViIcoGiJyVUwAExEREREREREREREROYGHFmY5OgQicgO8DYSIiIiIiIiIiIiIiIiIyE0wAUxERERERERERERERERE5CaYACYiIiIiIiIiIiIiIiIichNMABMRERERERERERERERERuYn/AwAA///s2zENACAAA8HgXyoDOAARDCSfOwXdPxWAAQAAAAAAACIEYAAAAAAAAIAIARgAAAAAAAAgQgAGAAAAAAAAiBCAAQAAAAAAACIEYAAAAAAAAIAIARgAAAAAAAAgQgAGAAAAAAAAiBCAAQAAAAAAACIEYAAAAAAAAIAIARgAAAAAAAAgQgAGAAAAAAAAiBh7zfN7BAAAAAAAAADvPIABAAAAAAAAIgRgAAAAAAAAgAgBGAAAAAAAACBCAAYAAAAAAACIEIABAAAAAAAAIgRgAAAAAAAAgAgBGAAAAAAAACBCAAYAAAAAAACIEIABAAAAAAAAIgRgAAAAAAAAgAgBGAAAAAAAACBCAAYAAAAAAACIEIABAAAAAAAAIgRgAAAAAAAAgAgBGAAAAAAAACBCAAYAAAAAAACIEIABAAAAAAAAIgRgAAAAAAAAgAgBGAAAAAAAACBCAAYAAAAAAACIEIABAAAAAAAAIgRgAAAAAAAAgIgLAAD//+zczUlDURSF0fviU0P8QTDoSHBkCw7sw0YtQ7ADHThSCCIJmkRink0Il+y7VgV7/nGOAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAghAAMAAAAAAACEEIABAAAAAAAAQgjAAAAAAAAAACEEYAAAAAAAAIAQAjAAAAAAAABACAEYAAAAAAAAIIQADAAAAAAAABBCAAYAAAAAAAAIIQADAAAAAAAAhOhrD0g3e38twzDUngEAzTk5PS/jyXHtGQSZf87KevVVewYANOdwfFROz6a1ZxBk9b0oi/lH7RkA0JyuG5Xp5VXtGU1wAQwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAjR1x5AoqEMm03tEQDN6vr92hOANNttGba/tVcANKkbjUoZ7dWeAQAA7BABmH83rJdl+fhQewZAsyZ396V0Xe0ZQJDN23P5eXmqPQOgSf3FdTm4ua09AwAA2CFeQAMAAAAAAACEEIABAAAAAAAAQgjAAAAAAAAAACH+AAAA///s3DFOQkEYhdF5CL6EAhtjo1CbuAPXbeUaLFyDwVYKMRKUwRWQWAiTdz1nBbec5Ms/AjAAAAAAAABACAEYAAAAAAAAIIQADAAAAAAAABBCAAYAAAAAAAAIIQADAAAAAAAAhBi3HsD/1U360k1nrWcADEZ9fyul7lrPADhoNJ2VMulbzwAYht13qetV6xUAAEAgAZhmRhdXpb+9bz0DYDA+nx7KfvPRegbAQZPFXTm7XLSeATAIdb0qm+fH1jMAAIBAvoAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAghAAMAAAAAAACEEIABAAAAAAAAQoxbD4Dfqvtalq/L1jMAjmJxs2g9AeCkXpYvrScAHMX8el66rms9A+Bktl/bUmttPQPgz/XnvXcdg+UCGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAghAAMAAAAAAACEEIABAAAAAAAAQgjAAAAAAAAAACEEYAAAAAAAAIAQPwAAAP//7N15fFTluQfw36yZ7PseyEIWRVHcARWvVrFaba24gl6rtvfTWr29rvV61UKtLcp1qdUq1I0KasG6UAWrol6sAoLsOwGykGSSySSTzJLZ5/4RODln1pMhM5lMft+/5sycc+Y98w6Zh/O87/swAUxERERERERERERERERElCSYACYiIiIiIiIiIiIiIiIiShJMABMRERERERERERERERERJQkmgImIiIiIiIiIiIiIiIiIkgQTwERERERERERERERERERESYIJYCIiIiIiIiIiIiIiIiKiJMEEMBERERERERERERERERFRkmACmIiIiIiIiIiIiIiIiIgoSTABTERERERERERERERERESUJJgAJiIiIiIiIiIiIiIiIiJKEkwAExERERERERERERERERElCSaAiYiIiIiIiIiIiIiIiIiSBBPARERERERERERERERERERJgglgIiIiIiIiIiIiIiIiIqIkoR7tBhARJaKWliO4+56Hhe2HH74Xp02dMootSkw7d+7B4pffELZvv20uTj3lpFFs0ZCBATtWrlyNg4eb0dHRCb2+E16PN2C/mpoqLHxyXvwbSERERHFz6213ob/fDAD48Y9/gJvmXjvKLUo8iRzX+Xw+rPl8LbZu2wV9RyfaO/Rw2B1B933jr39GWlpanFtIRERE8bJj5x643W4AQHFxIcpKS0a5RYnH6/Vi3/5GYTsvNwfFxUWj2CIpo7EHZrMFDocTdocDXm/g/ToAOGXKZKhUqji3jih5MAFMNEY8ufB5fP3NBgDACQ11eGLBo6PcouTm9fpg6usXtj0ezyi2JnFZbQPYtWvv0LbVNoqtGfLNuo144YVXoO/sirivbWAgDi0iIiIasmr1Z1i0eImw/c7yV6HRaEaxRcnParUJsZ3T6Rrl1iSmRI3rmptb8dQzL0raFo7PF+MGERERiRi6jWhtbRO2T5s6BQqFYhRblPw8Ho+QAPZ5+cMfisViFR5npKePYkuGDAzY0dTcImkbEcUOE8BEY4TL5RJ+HJ1O5yi3hihxdXYa8IcFf4TNlhg3LYmIiPy53W7e9CCSwePx4ImFf8K+fY2RdyYiIhoFPp+PkwaIZPD5fDjc1JwwgwyJxgMmgImIKKm8/MpSSfJ3Uk0VZs++AhMqyoMuB6jVcsYVERERUSL6aNWnkuRvbm4Orr/uKtTWViMnJxsKBM6wSktLjWcTiYiIiEgGQ7dRkvzVaNQoKS5GWlpqyNWQuPwz0fFhApiIiJLKjp27hccTJpTj+T89wSQvERER0Ri0a9c+4bFarcZTC+ejsnLCKLaIiIiIiKIhXgFJoVCgob4Oqam6UWwRUfJjApiIiKKWn5+LS2ddJGwXFOSNYmsGa9UZDEZh+weXX8LkLxEREZEMiRbXAUBbW4fw+JyzT2fyl4iIiEgGhUKBgvyhWC4RVkix2+3C4+zsLCZ/ieKACWAiIopa7aRqPHD/naPdDEF3t1GyXVpaPEotISIiIhpbEi2uA4AuQ7fwmHEdERERkTwKhQLV1ZWj3QwJp9MlPNalpIxiS4jGD+VoN4CIiGik+HzSbZ2OASURERHRmCUK7lJ4o5CIiIgoKSiVTEsRxQNnANO453S6YOjuhtfjRXl56Yj+ALndbhgMRvT2mpCRmYGiwnzodONneQuXywWjsQcWqw15ubnIzc2GQqEY7WYJ+vr6YTAYodVqUF5eCpVKNWLnHu99Hw273Q5jTy+ys7KQkZE+2s0R2GwDMBp74PZ4UJCfh8zMjNFuEhERhRDLuM7n86G7uwdGYw+0Wi0KC/PH1W9Cosd1drsdnZ0GOJ0uTJxYPqLJwvHe99FgXEdERMfL5/PB5XLB4/EgJSVlxBNGTqcLLpcLCqUCWo0WavXI3RNKdD6fD263Gy6XG2q1ChqNJqHiOq/XC4fDCZ/PC51Ox74fZT6fD06nEyqVCmp14qSTBts1+DdCo1FDo2EJOCJ/ifMvlijO9uzdj+UrPsCGDZvhcDgAAKmpOpw0+QTcfvtc1NdNgsHQjYVPvSAc85NbbsTkE+sjnrux8TBWvLMS6zdskhS412o1OP30U3HVDy/DWWedFvL49z9YhW/WbZQ819TUOvS4uRUPPDg/6LEzpp+Fq350ecQ2xtK/vt6Ajz/+HN9t3ipZ3iMvLwczZpyN2T++AhMnVkQ8z8FDTVi0eImw/Z93/gwVFWVwuz34/IuvsH37Luj1XejsMsDlcgv7Lfj9I6iqCl4fzOfz4ZNPv8BHqz7Drl17hedTUlJwyimT8dPbbkJtbXU0lw3g+Pv+mFhceyy0tBzB839+Rdj+xc9vRXXVxKD7vrTodRw63AwAOPGEetz6kxvhdLqw8h8f48OPPsGRI+3wHZ3lUV01EbNmXYhrZl8ZMtC32WyY99uFkuccdodk+9VXl2H5ig8Cjq2trcF//PTmkNflcrnwjw//iS++/Bq7d++TvFZVNQHnnzcds2dfgcwM3jQkIkoEsYzrentNeHv5+/jqq3Xo7DRIXps8uQGXXHwBfnD5JSEHkm3fsRtLl62QPGc09ki2H3r48aA33UqKi3DP3b+I2MZYGqm4DoAkfv3B5ZfggpkzAABbt+7E2q/WQa/vRIe+CwMDQ/XBbrn5Olx22cUhz7ljx24sX/EBvtu8DQ6HEwCgUqlQXT0Rc+dcg5nnTx/W9Yodb9+LxeLaR9poxnUA8PQzL0Lf2SV5zmyxCI+//PJr7N13IOA4pVKJBb9/JOR5GdcREY0tTqcLHXo9entNwv0OhUKB1FQdSkuKkZeXC2DwvonbPfh6Xm4OCgsLIp7b5XJDr+9ET68JTqdT8lpGejryC/JQWJAfMhlqNlvQ3qH3O6dLsr3/wMGgx6ZotagK8bsaLzabDZ1d3TCZ+oTPDgBUSiWysrNQWJCP7OwsWedqbW2DbWAAwOBnV15eCgCw2x3o7jbC7nDA4XBI3ic7KyvsZ2C2WKDXd6G/3wyv1wtgqO/LSkuQm5sz7Gs+5nj7Xmzf/kbhcWFhAfKOtstsNqOn1wSHwwmnwwmP1yPsV1ZWisKC/KjbH40DBw7CezQeK8jPQ76oJrBYt7FH+P+JUqlEXW0NAMBk6kNHRydsNptwHo1Gg9zcbJSXl0EdJgZuamqBw+9z9oi+Cz09vbBYrf6HQaFQoL5uUtjr6u01odvYg/6+fqFdg21TIycnB8XFhUjlJBwiAEwA0zj1yqvL8Nbb7wo3JY4ZGLBj03dbsWXrDtz5y9tx2tQp+O67bcLrs6++MuK5X3v9Lbz19rvweDwBrzmdLqxfvwnr12/Cxd+7APfde0fQ0Unt7XrJ+/rr7zeHfL2qMn7JP3/9/Wb84Yk/4ttvNwd9vafHhA8//ASffPIFbpp7LebOuSbs+SwWq+Q6bQMD2LlzD55Y+Ce0t+tDHicOsPzPN/+xhdi8eXvAaw6HAxs3bsHmzdvxn3f+DCeffGLYtgUzEn0vbutIXnusWG02STutVlvIfQ8dbhb2TdXpYDZb8ND//A679+wP2PdwUwsWLV6Cdes24r57fyn8R0LM7faE/XcCAPv2B/+PV7gbtQcOHMLvFzyLlpYjQV9vampFU1MrVq36FHff/XNMn3ZW2DYQEVFsxTKu++pf6/HMsy+hr68/6Ou7d+/D7t37sHr1Gsyf92sUFQXeeOzr64/4exUsNgGAurqaiG2MlZGO6wBIPoezzzodPT0m/O7xp7Bt+66Qx9gdzqDP+3w+vLR4Cd55Z2XAax6PB42NhzH/twsxa9aFeOC+4de1HYm+FxvJa4+V0YzrgMEb5gcOHAr5nm3tHWhr7wh4PtxMFMZ1RERjS2+vCYebWgLuq/h8PthsAzh4qAmmvn7UVFfCYrEIg9PS09JknbupuVWSkBSzWK2wWK3oNhhRW1sNrVYbsI/b7UZ/vzns+4R6PS0tNWIbY6n1SBs6Ow0BMTMAeLxe9Paa0NtrQl5eLqqrJkacdWsbGBCuVaVUwufzobnlCLq7jUHfA0DQ+2VC+1rbAgaCAUN933jwMAry86KqazsSfS8m7uOc7Cy4XC4cPNQEs9kS8phjCe14Mpst8Bx936zMzJD7OZ3Oob48er+sqbkFBoMxYF+Xy4Wurm70mfpRWTUB2VnBBwxYbTbYbAMh39PucMDucAQ8Hy4B73a7cehwc8j43OVyw2DohrHbiNKyEpSVloQ8F9F4wcXWadxZtHgJ3nzr7yGDEWAwIHn+hVfw7cYtwzr3iy+9hqXLVkgCmsLCApw2dQrKy0slP2Kfrfk//GbeE2HbMZb09fXj/gfmhbxJKOZ0uvDqa2/iBdEMAzkOHmzCQw8/HjYBGu49H/zvx4LeYE1NHRoV5vF48Oxzi7Dh2++Gdf5Y9/3xXHsi8gH43eNPB71JKLZ9x2488psFIYP0kbZ7z3488OD8kDcJxYw9vZg3/0l8+eXXcWgZEREFE8u4bu3adfjd409JbjBkZWXilCmTUTupWpJ02n/gIO657xEYe3qHfxEJKB5xnd1uxwO/nhc2ARrO8y+8EjT5m5KilQz0+uSTL/Dqa28O69yx7vvjvfZEw7iOiIhGQq+pDwcPNYVNEgKDK6kcaWsf3rl7TZIZwwCgVquQmZGBtLRUyT0bq82GvfsOBMzsHcsOHW6GXt8l6z5UT08v9u9vHHbCsqmpBQZDd1T3OZtbjgRN/iqVSknfdCdg33u8Xuzb3xg2+TvWtHfogyZ/xRxOJxoPHILdbg+730hxu93Yt78xZPJXzOvzoa2tQ1YMSJTsOAOYxpWNG7cELAd7wcwZuP66q1BTUwmHw4nNm7dj8ct/RUdHJ15f8rbsc69bvxHv/P0fwvaUKZPxq7t+JhmZ1t6ux3PP/wUbj96A3PDtZixf/j6uv/7HknN976KZaGiokzy3cuVq7Dy6ZPHEiRW4ae61QdtREWJEfaw9+9wiNB48LGyXlBTj9tvm4PTTT0VmRjr0nV1Ys2Ytlr35DtzuwWD+3fc+wokn1uOiC8+X9R5Ll64QZiKUl5eirKwEBfl5yMrKlARsOUGWq3nltWXYs3foppRarcZPbrkBl866CHl5ObDb7djw7Wa8+NLrMBi68cbS5bKvfST7PhbXnoi2bt0Bq9WG7Ows3PLv1+OkySegtLQY7e16bPpuK95YukJYwrO5uRXvvb8K117zQ8k5UlN1eOi/75Y8123oxuKX3xC2b7zh6qCjQ/PyApcNslptWLDgj5KRnFOnnoyb5l6LhvpaqNVqHD7cjL+/+w+s+fwrAIOzkJ965kXU1lajoqIs+g+EiIiGLZZxncHQjWefWyTELCUlxbjjF7fi3BlnC/vYbAN4fclbePe9j+Dz+dDR0Ymnn3kRjz/2kORcDfW1Ab9XW7Zsx+qP1wjbD9x/J9TqwJVB0tMjz2aJhXjEdatXrxFu9OXm5qCqcgLy8/OQm5stSeDWTqoKOPabdRvx/gerJM9dOusi3HD9VZgwoRxerxe7d+/Dq6+9ie07dmP5ivdl144byb6PxbUnopGI64DBZdn9Zx0/96fFQlmV8849BzOPLp0tFmyiCOM6IqKxxeVyobmpRZI8TEtLRUV5GTIy0qFQKGC12tDeoUd/vxl6fZfsmrVOpxNNza3CuVNStJg4oQI5OdnCPh6PB23tHULJB4fDiaamFtT5LUWbnp6GmpoqyXP9/WZ0dw8ly6qrJkIRJO6QUzIiFjo7DZLyI0qlEmVlJcjLzYVWq4Hb7UFfXx+OtLULS26bLVa0trahUuYqgzbbgLDcr1KpRFpaKrQaDTRaDZSKoc9Clxq4LK/J1IeuLmmpjYL8PJSUFiNVp4PP54PFakXbkQ5hiWi51YpHsu9D6TYYhWvXaNRI1aVCo9VAo1ZLvqOjPQNcLq/Xi46OTigUCpQUFyEnJws6XSrcbhesVhva2jqE6/X6fGg90i4sGS1WXl4WMJijublVeC43Jxu5R5dzFwvVt03NrZIZxSkpWlSUlyErKxMqlQpOpxNGYy/aO/RCf3d2GZCRkS4sG080HjEBTOPK63+V3vibc+Ns3HbrHOEHWaPRYObM6Zg8uQGPPPqHkHU7/Pl8Pvzl5aXCdl1dDRY+8ZuAJX7Lykrw+GMP4Z77HsXOnXsAAG+9/R6uvPJSpImWq2loqEVDQ63k2PXrNwFHE8A52Vn43kXybq7Fw8aNW7B27Tphu6GhFr+d9yAKCoZqS5SXleLfb74e9fW1+P0fnhFu7ry0aAnOO3catNrQyyEfo+/sQu2katxyyw2YPu1M2cG+0diDlStXC9sZGel45OF7ceYZU4XndDodLpg5AyeeUI9H5y0Iu/yc2Ej3fSjRXnuislptKCkpxrNPPyap01NXV4O6uhqcccap+NV/PSQs57Rs2Tu48opZ0IlqeGg0moB/B01NrZIE8NSpJ0v6OZy3//aeZFnBWZf8G+695w7JLJ+GhsGb+BMmVOD1JW8BGKyh85eX38D8eb8exidARETHK1ZxHQAsXfaOMLo8LS0NTy54NGDZ2rS0VNzxi9ugVqvxt+XvAxiM17Zu3YmpU08W9isqKgj4vbJarZIE8EUXnh+2NEQ8xTOuy8nJxs03XYvLvn8xUlLCL7UntsSv72+/bS7m3Dhb2FapVJgyZTKeWPAb/O/TL2DNmrUA5JXJGMm+D+V4rj0RjURcBwDTzjkj4NyLFr0OCwYTwJWVE2T/H4hxHRHR2KLXd8ElrhWbnYVJNVWSpGlmZgbqMybhcFMLjMYe2TNN2zv0wuxPlUqF+rpa6HQpkn1UKhUmTqiAQqGAXj84SMvU1w+z2YxM0dK5Wq0W+XnS322PxyNJAOfn5yXMPRu32y35PdSo1Zg0qRqZmUN17zUaNQoK8pGRkYHGxkMYODqjs8vQjYLCfFnLax9LCJaUFKGkuGhYca1/eYeK8jKUlhYL2wqFApkZGaivn4SmphYYe3ohd47xSPZ9KA6nExq1enCiRkG+7EGHierYv6v6uknIyhq6frVaBZ1Oh+zsLOzddwADA4PfE5OpD2aLBZkZGZLzBJug0traJiSAU1NTkS8zMdvX14/eXpOwnZ6ehtpJNZL/c6SkpKCsrARp6Wk4JFpJoKW1DTk52WO+X4iixW8+jRu7du3F3r0HhO1TpkzG7bfNDRqUFRTk4f777pQdsG3atBXNza3C9l2//GnIYEelUuFXd/2HsG22WPDpZ2vlXkZCevf9j4THCoUCv77/LslNQrFp55yBG0SzXo3GHqxZ83+y3icrKxO/nf8gZkw/a1jB9Mf//Fy44QQA1137o5BJwaKiAtx79x2yzx2vvo/22hPZLTdfJ7lJKFZfNwmXff9iYdtssWCP6N/vSLPb7fho1afCdllZCe6955cha8rdfNO1OOvMoe/Q1998i9bWtpi1j4iIpGIZ15ktFqz5fOj3ec6NV4esWQoAt/7kRsnv2YerPpH1PokqXnEdANzzXz/HVT+6fFgJ0O07dqOxcWh28plnTJUkf8W0Wg3uvfsOFBbmyzp3PPs+mmtPZIzriIgoWl6vV5JAValUqKmuDDpjVqFQoLpqYsQarce4PR70GIfKNJSWFAckAMUqysskSaWuCMvgJjqDwSiZhVleXiZJ/orpdCmorJLO+O3qNATdN5iS4iJMqCgfVvLXbLZIZnVmZ2VKkr9iSqUSVVUTZQ00BOLb95VVE1FUVJg0ScZjKw4Go1arA2rrRqqLfbw6/WaIV1dVhvwe5GRnobSkSNh2uVxJU6aHKBrJ8VeJSIat23ZKtufMuSbs/jU1lTj/vGmyzr3pu63C45KSYpx00gkRz11TM7Qs7dZtO2S9TyKy2QawefM2YfuCmTMiLhFz5ZWXSkaGbZBRXw4ArvrR5SguLhx2G8V9n5WViR/+8Pth96+rq8F5554j69zx6vtorz1RpaSk4OKLLwi7z0V+MzzEifaRtmPHHkkdkdlXXwG1OvzyTNddd5Xw2OfzDbu2JBERRS+Wcd32bbuEEe0AMPP86WH312g0kuWBt2zZEVXts0QQz7jutKlTcK7MeEtsm1/f33BD+HIaKSlaXDM7cLnhYOLV99Fee6JiXEdERMfDarXBLUpSFhUVhBy0A0BYmlYOs9kCj6iWbW5uYDko/3Pn5AztY45xYivW+vr6hMdarSbkoL5jMjMykCVKEJtk1FsFAKVCEXbQXCj+dXNLSoInf4X3USoTru+zMjORK1pSOhkUFIQfPJmXlytJdtsHYlcH2OPxSBLMebk5SA2ylLhYYVEh1KIBJHLqBhMlKy4BTeOGeJZIWloqzjzj1IjHTJ92JtZ+tS7ifnv3NQqPlUoFnnr6zxGP8XiGgpA9e2I3Aj7W9uzZL9RIA4Bp086MeExmRgZOPfUk/OvrDQCAHTt2y3qvysqKqNt4zJQpkwOWJQlm2rQzhfaFE6++j/baE1VFeWnEkZH+oz79/2Mwko7V1z5mxvSzQ+w55PTTTkFGRrpQl27Xrr2YffUVMWkfERFJxSuu02o1ePtv70U8pqOjU3hsMvXhyJF2TJhQHvG4RBPfuE5eTTl/4v5JT0/DaVOnRDxmxvSz8OJLrw3r3LHs+2ivPVExriMiouPhX/9dTjItJycbLa1HZJzbKjxWKhTQ6zvD7D3I4XAKj11uN+x2e0DZgrHA6/XCIvpss7OyZK2Ik5OTjf6jv9Nutxs220DE+rU6nS6q2a/i/lGpVCFnnfq3r0XGSh3x6vtgdY3HupSU0DOlh/bRCgMn3R55pVaiYbXaJAMsc2T8fVCrVMjMzECvaXAARCzjTqJExwQwjRu9vUOj3srKSmQFPaGWHfFnNPYIj9vb9Whv1w+rbT09vfD5fGNyad9uo3RJFPEyG+GUiPYz9fVjYMAecQRXNDNgrVabZCaH3PaVJVjfJ9PsXwAoLAq+RKBYXm4OtFqNsHy3y+WOcET0xP2o1WpkLxVZXlaCffsHa0oausf20lBERGNJbOO6oSXCnE4XVq3+bPjtM/WNyQRwPOO6IhmxQDAm01DfV8icaVJcXAi1Wi3UgAslXn0f7bUnKsZ1RER0PFxul2RbTvJJq9VAqVDAG2HlDZeoHJjX54vq77vL5cYYzP/C5XJLEmdyPlcA0Prt53S5kIbwCWBtlCUtxHWfdXLbp9VCoVBEXHUlXn2fInNJ6rFCpVRCo4mcMtJqhxLAPm/sVj9yOp2SbbnlU8Tfd7fbDa/XmzRLdBMNB7/1NG6YLUOjfYqL5CXTioexrMjx8Hg8ASMexwqLRdruApk3WAr9lhOR8xkGq/8SybFR/KHeNxS5Cdd49X00157I1DKuR6FQxO26xd+TwsIC2YMxCkS17jiikIgofmIZ14lnC0RrrP4mJHpcB0h/swtC1JwN9l5yvifx6nvGdbHFuI6IaGzxiFYfUalUYZd/PkahUMhKOnpGYGbiSJxjNHg80sFWGpmJSq1fDV9PhAF0ABDtdBbxZyu3tq9CoUCKjBrQ8er7sTiZJyyZ1xOv6/bvA41GXgLY//seaSAoUbLiDGAaN3S6oZE/fTLrOMitEZCenibcaJg160LcfuvcYbcvPT1t2MckAv/ZHX19Zln1OPz7IDUtNsMpA9ons+97RbNLwhnPfZ9MxH8fTDL7HpD+jUhLwmV/iIgSVSzjOnHsMHFCORY+OX94jQOQmRm53EQiSvS4DpC2UW6f+nw+9JpMwzr3eOv7ZMK4johobFGqhuYneTwe2TP13DJWk1CKBh/pdDo01NcOu32R6sgnKqVS2m65CTD//ZQxHMAl7ufhJOhcLlfEfcZz3ycT/++f2+2WNQs4nt9jokTGBDCNG+I6Eu3tHbKOEdf0Cic3NwednQYAQGenAQUFecNv4BiVnZ0l2e7s7EJD/aSIx+n1XcLjlBQtMtLTR7xtwOBNOJVKJYwY65BR8wMA2tvZ9+NJtqiGiNVqQ19ff8B3O5gO0ZLfcuqQEBHRyIhlXCf+e97eoUdmZobspcbGukSP64Do+t5o7IXNNhBxv/Hc98mEcR0R0diiVklvTzsczoilJNxut6y6oxrRbGKHwwG1WjVuloH1X8bXfyndUBx++2lkzMiOlni2t93hkHWM0+mCx+uNuN947vtk4v/9czqdsibSOEX1nJVKpawVa4iS0f8DAAD//+zde3xcZZ3H8e/cMpPJpE2b+625N4WWS5HKpe5aYKFlKQKlgAgWZV+yKl5AXJSrosAiIrquAq6uwlIEykV00YIUkFUEWiill9A2UNqmySTNpWkuk0wyk9k/Yk9zMmlmIjOTZObzfr36es1zOPPkIb8k5zfn95zn4a8eUkZlRZnxuqOjUw0NjRHfU/fujqj6HjmL7L33dskfZdLy9xqdjE2mebXmGXTb6iJ/z4LBoLbvqDfa84+eF7elQywWi6qrK4z29u31CgQif0jYtm17VP0nOvaIj3mjZoJujSL+DQ2Nau84vFfgvHk1MR8XAGBs8czr5tUe/nseCJhzlnjx+6dGbjfV8zpJqhgV+71RxH7r1nej6nsyYo/YI68DgOlldLF39FZeY4nmHMm84looFErI9mtDURQnE8Fms5m+t9F+z0aeZ7Va5XaPv//vh+FOP9z34GBA/f39Ed/T0xPdNg2TEXvE3uhibzQ/x6FQSD0j4u3xxG9yKjDVUQBGyjjmmKNN7cfXPDPu+QcPdukPa9dF1fcJJxxrvO7t9empp5+N+J5QKKShoSHjXyRZWYdnrbe1tkc1rkTIzp6tmppKo7127bqIe2a99PJf1DRihv3ChcfEbXySdMyCo4zXXm+L1r34yrjnt7a267nnX4qq70TEHvF3/PELTDNPn3zydxHf88SocxYeH9+fYwDAYfHM6447br7pmvDoY09H9b4J5XUzzU8XtrV1RPU14m065HXHjsjrJOnxx38z7vmhUEiPrRn/nEMSEXvEH3kdAEwvmZke0+Sx5pb9CoVC475n5Ooj4/edaeo72lXhQqGQ8S+S8CcUIy9PnCgjV07p7fWpK8LWKX6/Xx0jJkRlejxxfWrWM2rrDG8UcY02homIPeLP4XCYJiG0trVHfLCno+OA6QGdGWzRghRGARgp46SPnmBanveFdX/Sxrc3j3nu0NCQfv6Lh6OeHXbKySequKjQaK9Z81vt2dNwxPMDgaBuufUunbl0pc5culLfuOE7Eb9GYWGB8bq944DeWL8xqrElwrnLlxqve3t9euBnDxpLLo/W3LJfqx95wmg7nU6dveyMuI7vrLNOM7V//eunjGWbRxscHNT9D/wq6id5ExF7xN+sWVla8vHFRnvzlrpxCwUb396sF9b9yWjX1laHFSMAAPETz7xu1qwsnbbk8DVhw4a3I04e+/WjTxnX9vNXrJLPN/7XKiouMLVHXlMm21TP60466SPKzc0x2utefEUbN44de2m4sFdfvyuqvhMRe8QfeR0ATC92u9209H5/f/+4W3e0trWrO8qnQB0Ou2bPnmW0Dx7sUnv7+BPvvN5mvfnWJr351ia9vWnLEfOgQ5xOp6kdqf9EyhuRM0nSvn1NR9xrd2hoSHsbGk2Fz7y8nDHPjZWsmTOUluYw2u3tHeMWqZub90e1rYeUmNgjMfJyc43XwWBQDfsaj1ig9/sH1OQ9PDnVarUqJye+P8fAVEYBGCnD4XDowhXnGu1AIKibbr5Dv//DC6bZ+l1d3frOd+/R2udejLpvm82mK1ZdYrS7e3r0lWtu1Msv/yUssaqr26EbbvyuXnt9g3FsxQXnRPwaVZVlpvYdd96rh1ev0fr1G1Vfv0vv79qt93ftnpQnSM78pyWqrjq8zPJzz7+kb3377rDEatOmrbrm2pu0b1+TcWzlhedq1qysuI6vqrJc//Cxk412Y5NXX732Rm3ZUmc6r7W1TTfceLte+b+/yhbl3hCJiD0S4/LLVppmFf7g3vv0qwcfNS1BFAgE9eyzf9RNN99hmtX72c98KqFjBYBUF8+8TpIuv+wiud2Hlxu763s/1oMPPRpWRG5padUP/+MB/fcvHzGOLT/nLNN7x1JSXGhazuzxNc/onnvv06uvvqHt2+uNvC6apa1jbarndXa7XRet/ITRDgSCuumW8Nj39/frp/f9Uj/7r4ckKercLt6xR2KQ1wHA9FJQkGd6WrOxyas9expM1/ZQKKQmb7N27947ob6LCgtMecCuD/aosdEbVtwbGBjQ7j0N2tfoNY7l5mZHzCFcLqfpHG9zi3bv3qsDnQfV2+uTz9cnn68vquWNY83lcik3N9to9/p8end7fVhe4/f7tXPn++rsPGgcy8z0mArz8WCxWFSQn2e0Q6GQ6uvfV2tru6nAN1yc3qeGfY3G+6IR79gjMbKzZ5nyura2dr33/gcaHDQ/bd/d3a3tO3aqv//wQz0F+Xlh+2EDqYSffqSUlReeq9ffeEvvvLNV0vCyLPf+8H49vHqNyuaUamBgQDt2vmfsw7Z48Ul69dU3our7jDP+UW+/s1Vr/za7vKenV7ffea+czjTVVFfKYrWqqdFr2ltKGi4AnnLyooj9H3fcAp16yiL99bXh4mFvr08PPvRY2HkXrliuL37hyqjGHCtpaQ5df/2Xdd11txqzMF97fYPWX7ZRlZVl8mRkqLllf9gMzmOPOVqrPn3JWF3G3Fe+fJXq3t1p3LxsbW3XNV+7WWVlpcrPz1VPd4927HzfSAKXn3Omfvu756LqO96xR2KUlhbri1+4Uvf84KfGsdWPPKGnf/N7VVTMkc1q1d6GRtMHIkm65OLztejE4xM9XABIefHM60pKivSlq6/U3d//iaThm1EPr35Cqx95UhUVc5SVNVPNzcO5zcibU0fNm6vPfubSiP27XC5dftlFRnEyFApp7dp1Ri5xSE1NpR64756oxhwr0yGvW3HBOXr9jTeNJ39Hxz4QDKi+fpdxc3PJksXasrkuLBcbS7xjj8QgrwOA6cWTkaGCgjxTfrG/tU3tHQeU4U6XLBb19fVpcHB4or3HkyG/fyCsADQWl8upOaXF+mBE4bjJ26wmb7Pc6emyO+zy+wfCVoLLyHCrpLgoYv9Wq1VFhQVGcVIafkq5tc28fZvbna75R8+L2F+szSktMQrR0vAkubp3d8jlciotLU2BwYB8feanah0OhyrKy8bqLuby8/PUebDLePJ3KBTS7j171eT1Kt3lGt6/19dn3K+bPXuWurt7pkTskRhWq1UV5WXasaNegb/9HHR2HtQ7B7uUnu6S3WaXf8BvfO47JNPjUVFRwVhdAimDJ4CRUqxWq2771vVaMN+ccLW2tuvNtzZp85Y642Jx6imL9NkrPjmh/r92zed13ieWmY75/QPaum27tmwJv+l02mkf01WfWxV1/1df/S+qnVs1oTElSlVlub53162m5RiDwaDq63fp7U1bwm4SLlq0UHfcfpPs9sTMpps9O0t33/Ut08xCSdqzp0Hr129U3bs7jWRy2dLTTcsfRiPesUdinL3sDH39uqtNSxD5fD5t27Zdm7fUhd0k/NSlFxJHAJgk8c7rlp51ur5+3dVyOtOMY6FQSLt27dHGjZvV1NRsKgBWV1folpuvk8PhGKu7MCsuWK4lI5Ybnkqmel5nsVj07Vuv1wkLjzUdPxT7TZu2GsXfmppKXfvVz0+o/3jHHolBXgcA00tJcVHYksXBYFBd3T3q6uo2ir8up1NVlRWK8iFQSVJOTrYqyueE7Wfr6+tTV1d3WAHQ7U5XdVVF1E+a5ufnmpYbnkqsVqtq51Yr05NhOt7f71dXV3dY8dfldKq2ttqUB8VbdVWFab9iaXiC38GubnV19xj369zudJWXlU6o73jHHonhdqdr7txqpY3It0OhkHy+PnV1d4cVf2fOnKGamkriiJTHE8BIOZmZHn3/7tu05oln9NTTz4btLeF2p+vST67QxRedp8YRS39IUqRLhtVq1Ve+fJUWn3qSVj/yhLZsfXfMPQlq51bp4ovOn/BNv4L8PP3kP7+n3//hBa1fv3F41lpTs2nJsslUW1utX/z8R1r9yJNa98Kf1HmwK+ycivI5WrnyE1p61mkJvwiXl5fq/vu+r/95+HE9/8eXw/YNycqaqStWXaLl55ylvXsntuRivGOPxDl72RmaP3+eHnzwUb32+oaw3y+LxaKFxx+jK1ZdogULjpqkUQIApPjmddLwNeGYBUfpVw89qtde2xB2Y0EavuF37vKlWnHBOWF7wI3Hbrfplpuu09nLztDa516Ut6lZ+xq9Ue9VHG9TPa/LyHDr3++8Rb/93VqteeKZsG1Q7Ha7zj/vbH368ovlGXXDMxrxjD0Sh7wOAKaXsrJSZWZ61NjoVf+owpw0XMwrKS6Sw2HXEbYAPaKcnGx5PB41NnnV2XnQtLz0IWlpacrLzVF+fm5YwXA8FotFVZXlysmZrba2Dvn7/er3+6fMHrJ2u121tTVqbW1Ty/5W0xK5hzgcDuXmZKuwMH9C/++xYLPZNLemSvv3t6q5eb8GBsOv1/l5uSoqKvi7lmWOZ+yROBkZbs1fcJS8Tc1qa+8Ycz/r9HSXCvLzlJOTPUYPQOqxdB5oneDlEhPR1rL3iJuSJ6uQ36e+Df8b8TxbTqmc806Nut+h0JD2Ne77MEMLMzg4qE2btqqxyauhoZAqKuaoprrSuEn01lvv6Ppv3mac/+Mf3an586NfrqW1tU0763fpQEenLFaLsmbOUE1NlfLykn/z+UAgqG1127V/f5t8Pp+ysmaqbE6pyssnNlMvXvr7+7Vl63a1trbJ4XCorKxEZXNKYzbDMZVjn0x6enpVV7dD7R0HFAwENTt7lmrnVik7e3bkN0/QnJI5Ec/pe/NZhfp7I57nXnyxJjQdOkllzsiWy+2Z7GEgiXR1tskfxe9gMgo01Wtg18aI5znnnSJbTuS/Z5K0d9/E9m+LJN55nc/n07a6nWpra9fAwKCysmaopKRIlRVlST+zfKrndaFQSNvqdqip0avBQEClpcWqqJijTE9srgGpHPtkksi8rrS4NKqfjaGeA+rf9MeI59nzypU296RYDG3acroyNCOLz1KInX5ft7q7OiKfiKgMDA6MWVT7MHp6etXX169gMCiXyym3222s6hAKhfTmW5uMc0uKi1RYmB9138FgUD09vRocHNTQUEh2h10up9O0z2gyO7QncSAQkM1mk9PpVEaGe8rkNT09ver3+xUaCsnlcirdnS57jPbjTfXYJ4tQKKSenl4NDAwoGAzK7nAo3eVSeror5l/LmeacMr8bycJisSonf2p8lkx2PAGMlOZwOLRo0UIt0sIx/3tzy35TO2vWzAn1n5ubo9zc1PyQarfbdNyx8yd7GEfkcrniur9XKsc+mXg8GfroR0+Y7GEAAKIQ77zO7Xan7N6gUz2vs1gsWjB/Xthy4LGSyrFPJuR1ADC9eDwZR1zFY/SyvQ7HxG5x22w2zZw54+8e23TndqdP6YLneLH/sFI99snCYrEoM5MJ/0AkFICBcWzY8LbxOitrpooKp9/G8QcOdCoYjN0sTLfbJbfbHbP+ED/EHgCAw8jrwnFtnz6IPQAAhx0ctTXFdLymBYPBmF7brVaL7HZu9U8HxB5AovCXASnj0L65h1z1uVUqLi484vnbtm3Xn//yutE+8SPHT8vlHm646XbV1++KWX+rPn2Jrlh1Scz6Q/wQewBAsiKviw2u7dMHsQcAJKuenl41N7cY7eycbM3KOvJKLcFgUN7mwyu7OJ1pcVn2Nd4am7xqaWmNWX8zMjNVW1sds/4QP8QeQKJQAEbKKCkp0r0/vN9o79j5vq7+4pX62OKTwm4AvvTyn/XT+35pOnbeeWcnZJwAAAAYH3kdAABAckhPd6m7u0eBYFDS8NO9xcVFysvLkdVqNZ3b2+vT7t17NTg4aBzLzc2ZlhP7AACINwrASBnHHTtfy5aerueef0mS1Nrapm/fdrcKCvJVXlainJxstbV3aM+eBnm9Lab3nn/eP+voo+ZOxrA/tKrKcnkyYrdvRl5udsz6QnwRewBAsiKviw2u7dMHsQcAJCubzabS0mJ9sHuvJGkoFFLDvkZ5m1vkdqfLmZamYDCovv5+9ff7FQqFjPdmZLhVkJ83WUP/UJxpTs3IzIxZf9PxKehURewBJAoFYKSUa6/5vILBoF5Y94pxrLm5xbTUzGinn/YP+terrkjE8OLi377+pckeAiYJsQcAJDPyOqQSYg8ASGY5OdkKBofUsK/RKPAGAgF1dXUf8T1ud7qqqyqm7dO/+fm5ys/PnexhYBIQewCJQgEYKcVut+ub3/iqTj75RD32+G/G3UeruLhQl35yhZYtPX3aJpMAAADJirwOAAAgeeTn58rjyVCTt1mdnQePeJ7dZlNefq4K8vNks9kSOEIAAKYXCsBISUs+vlhLPr5YjY1ebd5SpwMHOtXd3aP0dJeysmbq6KNrVVVZzg1CAACAKY68DgAAIDlkZLhVU12pwcGAunt65Pf7FQwEZbFYZLfblJ6ersxMD3kdAABRoACMlFZcXKji4sLJHgYAAAA+JPI6AACA5OBw2DV7VtZkDwMAgGnNOtkDAAAAAAAAAAAAAADEBgVgAAAAAAAAAAAAAEgSFIABAAAAAAAAAAAAIElQAAYAAAAAAAAAAACAJEEBGAAAAAAAAAAAAACSBAVgAAAAAAAAAAAAAEgSFIABAAAAAAAAAAAAIElQAAYAAAAAAAAAAACAJEEBGAAAAAAAAAAAAACSBAVgAAAAAAAAAAAAAEgSFIABAAAAAAAAAAAAIElQAAYAAAAAAAAAAACAJEEBGAAAAAAAAAAAAACSBAVgAAAAAAAAAAAAAEgSFIABAAAAAAAAAAAAIElQAAYAAAAAAAAAAACAJEEBGAAAAAAAAAAAAACSBAVgAAAAAAAAAAAAAEgS/w8AAP//7N3BahNhFIbh808mGKgLESxSm+5151V45V6DN1BEKqWLLsTY/uO2IIjCNCdz5nmu4Ftkccg7mQjAAAAAAAAAAEWM2QPgXw1tiPM359kzAACYgbsOqKq1lj0B4Ki24xjTlL0CYH7uOpZMAGZRdi922RMAAJiBuw4AoIbWhtBIAOC0eAU0AAAAAAAAQBECMAAAAAAAAEARAjAAAAAAAABAEf4DGAAAAABgRfr9bUz9MXsGQGmbl68jNjIcOXzyAAAAAABW5OeXzzEdfmTPACht9/FTDGevsmewUl4BDQAAAAAAAFCEAAwAAAAAAABQhAAMAAAAAAAAUIQADAAAAAAAAFCEAAwAAAAAAABQhAAMAAAAAAAAUIQADAAAAAAAAFCEAAwAAAAAAABQxJg9AAAAAACA07O9fB8x+A0RwFOPd9+i399mz4C/EoABAAAAAPjDdv8hYuMrZICnpodfAjAnz+NbAAAAAAAAAEUIwAAAAAAAAABFCMAAAAAAAAAARQjAAAAAAAAAAEWM2QPgf/TesycAPIth8EwWsC7uOqAqdx2wNn3qEVP2CoD5uetYMgGYxehTj+uv19kzAJ7F1eVV9gSAo3LXAVXt3+2jtZY9A+Bobr7fxOFwyJ4BMLuLtxcxjjIay+TxBQAAAAAAAIAiBGAAAAAAAACAIgRgAAAAAAAAgCIEYAAAAAAAAIAiBGAAAAAAAACAIgRgAAAAAAAAgCIEYAAAAAAAAIAiBGAAAAAAAACAIgRgAAAAAAAAgCIEYAAAAAAAAIAiBGAAAAAAAACAIn4DAAD//+zdeVhUVR8H8C8OMizKIiAgorKJsgm4a6i5k/ueS6aVLb7lW2aZZu6mZZZtppl77vsGCJqmr4mioiCGiqK4IouAM8MMzDjvH+RlLswwo5no9P08T88zZ+7hdw+MT/w4v3vOYQGYiIiIiIiIiIiIiIiIiMhMsABMRERERERERERERERERGQmWAAmIiIiIiIiIiIiIiIiIjITLAATEREREREREREREREREZkJFoCJiIiIiIiIiIiIiIiIiMwEC8BERERERERERERERERERGaCBWAiIiIiIiIiIiIiIiIiIjPBAjARERERERERERERERERkZlgAZiIiIiIiIiIiIiIiIiIyEywAExEREREREREREREREREZCZYACYiIiIiIiIiIiIiIiIiMhMsABMRERERERERERERERERmQkWgImIiIiIiIiIiIiIiIiIzAQLwEREREREREREREREREREZoIFYCIiIiIiIiIiIiIiIiIiM8ECMBERERERERERERERERGRmWABmIiIiIiIiIiIiIiIiIjITFhW9QCIiB5VxtVMTJgwVWhPmfIhwsNCqnBE9DjOpaZh2bJfhfbo0cMQGhKot+8X87/HieOnAACNGwdg9qxJT2WMRERE9M8bOeo/kMvkAIB+/XpgxPBBVTwielQqVTE+mTRTaEdGtkb/fj309t2zNw4rVqwT2ps3LUe1anw2nYiIyBwwr3v+Ma8jMh8sABPRc+fBgwfILygU2hqNpgpHQ49LLlcgOeW80Jb99QeCPiqlSvjMlUrlPz42IiIienrkMrnwe764uKSKR0OPQ6t9IMrrAgL8DPYtKVGLcnkiIiIyH8zrnn/M64jMBx/HICIiIiIiIiIiIiIiIiIyEywAExERERERERERERERERGZCRaAiYiIiIiIiIiIiIiIiIjMBM8AJiKiKuHs7IRuXTsKbReXWlU4GiIiIiJ6XBKJRJTX+fv5VOFoiIiIiOhxMa8jMh8sABMRUZXw8/XGxx+9W9XDICIiIqK/qXr16szriIiIiMwA8zoi88EtoImIiIiIiIiIiIiIiIiIzARXABM9Y5RKJW7dykJh4X3Y29eEq6szatas8bdiarVa5OTkITc3D1ZWVk8kZnkFBYUoKiqCk5MTpFKrJxIvOzsXVlbV4enpAYlE8gRG+XQoFEXIycmFTK5ALScHuLq6PNHxK5VK5OcXwMXFGZaWpv1vPDs7FxYWFnB0dICl5d8fi0pVjLy8e3B0dICNjfXfjkdERGSOmNeVUiqVyMrKRnFxCerV84RUKn0Co3w61Go17t7NQX5+AWrWrIHatV2e6PiZ1xERET0f1GoNsrLuIjs7F7Z2NnBydISrq/PfjptfUIicnFxoNA/gXMvpiR+PpVQqkZt3Dw729qhRw+6JxGNep59Go0F2dg4cHEzPqe7fl0Eulz+xvFuj0SAv7x6qV68OR0eHvx2PiJ5vLAATPQMUCgV27IxBdMx+3L6dJbpmYWEBX98GaN+uDXr16oaaNUyf4MvLy8fGTdtx5H8JyMrKFl0LCmqELp3b46WozkaLk1qtFhMnzRTaPV7qgvbt2iAvLx/r1m/B4cPHkJt3D0DpORFBgQEYMrgvWrVqZvJYH94nPv4Q9kbH41xqmvC+VCpFaGgg3nh9BPx8vR8p5tN0+PAx7I2Ox5mzKVCrNcL7jg72aNWqGYYM6Yd6Xp5G48Tu+w2/HTwCAJBaWWHWzElQq9XYszcOO3fG4PqNW9BqtZBIJKjn5YmoqM6I6t4Rtra2ojjnUtPw69rNuHAhHYWF9wEANjbWiAgPxchXhsDP79F+llqtFrH7fkNc3EGknPsTWq0WFhYW8PLyRPt2rTH05QGQSq2wfsM2JJ1JAQDU8XDH+/99S2+8zMwb+GHRMqH9ztuj4d2g3iONiYiI6FnDvK7MuXN/YuOmHTh1+ixUqmIhprd3PbwyYjBeaNvykWM+LRcvXcaWLbuQcPwU5HKF8L5UaoWI8Cbo0ycKzZuFGY3zb8nrAODTKXNQolYDALp1eRGdOrV7pDERERE9ax48eICDh45i69ZduHzlqmiuBwDc3d3QqmVT9O/XA56eHibHLSkpwfYd0fjt4BFcunRFdK1u3TpoF9kagwf3MSlX/GnxCmRczQQANG7UEKNHDUVxcQl27Y7Fnr1xuPFXrgEA3g3qoVu3jhjQvyeqVXu0jUGZ1wGXLl3B0mVrhPa4d8egbt06SDh+CuvXb8XFS5dRXFwCAHBxqYUXO7yAvn1fgrtbbVGcu3dzsGr1Bpw6nYzs7BwApX8nBAc3Rt/eUejQoe0jf49JZ1Kwc2cMTiQmQaVSAQBcXV0QHhaM10YPh6urM06cOI0t23YLXzNz+kRYW+svVDOvIzIPLAATVbHz5y/gs2nzkJ9foPe6VqtFenoG0tMzsGt3LCZ+PA7hYSFG4x4+cgzfLFwsTBCVl5qahtTUNMTE7MeM6RPh6upiMJZWq8WpU2eFdovmEUhPz8Ank2fh3r18UV+NRoPklPNITjmPXj274a03XzXpqTeZTI4Zs+bj9OnkCtdUKhUSE5OQlJSM/457CwEBfkbjPU0KhQJz5i5EQsJJvdfzCwqFyb/XRw/HwIG9K42XlZUt/Lxr1LBDUZESn02dK0y+PaTRaJBxNROLflqO6Jh4zJoxCXXquAMAlq9Yh7XrtlSIXVSkxNE/TiDxZBJGvToUgwf1gYWFhdHvsaCgEDNmzsfZ5FTR+1qtFpmZN7Dm1804fCQB87+cjuvXbwnjlzdS6AtXek2hEP270k3CiYiInkfM68ruseTnVdi8ZVeFaxqNBunpGZg2/QtEde+ED8ePNRrvaVu+Yh02bNwOjUZT4ZpKVYxjCYk4lpCIzp3aY8KHY1G9enWDsf4teR0AnE1ORVGREgAQ1iTY6DiIiIieZQUFhZg4aWaFAq2uO3eysGNnNKJj4jHmjVfQv19Po3GvXbuOGbO+wrVr1/Vev3HjFtat34rYfQcwedIHRnPFy5evCnmFjbU17stkmDx5Ns7/ebFC34yrmVi8ZCWOJZzEhPFjhVyjMszrysjkcvE8lqIIi5es1PuzycnJw+YtuxATewBTJo9H8+bhAICjf5zA3HkLhZzpIa1Wi5SU80hJOY/jiafx7tjXYWdnWyFueQ8ePMAPPy7Dzl0xFa5lZ+cgLv4Q/jiWiBnTJiI3755o/BrNA4NxmdcRmQeeAUxUhe5k3cWMWfNFk4SOjg4IDAxAeFgIPDzcRKs4srNzMX3Gl8KTfYb8fvgPzPn8a9EkoYODPUJDAuHr00C0vdyFi5cxfsJU5OXl6wulV2HhfUyeMqfCJGF5u/fsw6KflhuNV1xcgkmTZ+kt/uqOVa3WYOG3S0TJSlVTqYoxafJsUfFXIpGgfn0vhIUFw7mWk/B+cXEJflqyEuvWb32ke3z3/c8VJgnLu3r1Oj6aOAMKhQLbd0TrnSTUVVxcgp+Xrsb6DduM3l+pVGLipJkVJgnLu3btOmbMnK83qSYiIjJ3zOvK/Lhomd6JMEtLiahAGRN7AKtWbzR5rE/Dop+WY+26LaJ8xs3NFeFhIRVW9uw/8Dumz5wvrKoxBfM6IiKiZ59arcbsOV+Lir82Ntbw9/dBREQoGjTwEm3XW1xcgh8XLUdc3MFK42Zev4mPPp4uKv5KpVIEBPghKKiRqOCXl5ePT6d8bjRv0KUFMGfO13qLv7rOnj2Hz6bNrbCiWR/mdYbt23dA789Gl0wmx5Spc/Fn2kWkpV3CnM+/qVD8LS8u7iBmzVlg0hi+WbhYb/G3/Bhmzf4Kd+/mmBSTiMwHVwATVaGVK9cjJycPQOm2I+PeexOdO7UXneWVm5uHnbtisXHTDqjVashkcsyeswBLl3yjd7uWu3dzsPDbJUIS5+7uhv+MfQ1tWjcX+igUCqxYuR7bd0RDq9Xi1q07WPjtYsyc8YlJ4965KwYymRw+PvUxYvgg+Pl6o2bNGrh67Tri4w8hOma/0Dcm9gB69uha6ard5SvWipJTS0sJRr4yBF27vAhXV2fI5QokHD+Fn5euQk5OHlaveXYSyuUr14m2q47q3glvjhkJe/uawnunk5Lx/fdLkXn9JgBg1eoNCGsSjMDAAKPx5XIF4uIPQSq1wojhgxARHoq6devg5q07OJOUjDVrNwuJ4507Wfj2u6VIOF5ajPb2ro8RwwfC398Hdra2uHLlGqJj9+Pgwf8J8ddv2I4unTtUem7NsuVrRX/0SKVSjHr1ZUS+0ApOTg7IysrGvriD2LhpB1JT05CRUflENhERkTliXlfqWEIitu+IFr3XuVN7vDykL+rX94JGo0Fq6gWs+CuHMqVo+bQc/eMEtm7bI7RDQwIxbtyboiMqbt66je++W4qTp84AABISTmLL1t0YZGSHF4B5HRER0fMiLv4QTieVLVIYNLA3hg8fKNqSWalUYv+Bw1i9ZhNyc0tzwIXf/Yyg4EbwrFNxO2iNRoOvFvwoHLVhY2ONV4YPwoABvYV8UavVYtfufVi+Yi1kMjlUKhW+WrAIi3+ab9J20GfPnoNMJoeDgz1eHTkEQYGN4OHhhlu37uDkqTNY8+tmYXvgq1evY8fOaAwc0MtgPOZ1lduzNx4AEBXVGZ06RsLXpwHyCwpx4UI6Vq3eIBwHo1ar8f0Pv6C6pSVUKhXs7Wvi1ZFDEBzcGG5urrieeRPHT5zGho3bhLw/MTEJR48eR9tKttY+fOSYKFcHgF49u6Fnz67wrOMBmUyGhOOnsGzZWuQXFGLL1t0GIhGRuWIBmKgK6T7F169vD3Tv1rFCH2fnWnht9DCEh4dg7dqyp/8vXExH40YNK/T/de1mYYWIra0tvpw3tcJTbba2tvjP2NdRTSLBlr+eVDv6xwmkpJxHSEig0XHLZHK0atUMU6dMED3xGBoSWLoaxbcBvv/hFwClyeuKVesx7/PP9MbKzbsnelLNzs4WUyaPR4sWEaL3OnWMRFBQAKZN+wLplzOMjvFpuHMnC9u37xXafXp3x7j33qzQLyI8FPPmTsXbYyegsPA+1GoNVq/ZiHlzpxq9h1arhVQqxTcLZokmWwMa+iKgoS+aNgvD+x98KkwW7j/we+k9I0Ixc/onom0aIyJCERERCq+6nkIRXaFQYP2GbRj33hi998/OzsGu3bFC28HBHtOmfoQmoUHCe/Xre+HNMSPh7V0fXy34EQoFt3ImIqJ/H+Z1pcqv/Hj9teEYNnSA0K5WrRrCwoLx5RfTMX/BD6ICZlXSarX4ZdmvQtvf3wdffjGtwjaAnnU88PmcT/H++Ck4f/4CAGDd+q3o8VIX2NraGL0H8zoiIqJn35mz54TXQUGN8PZboyr0sba2Rs8eXdGyRVMs/G4JVMrSwmpSUoreAvBvB/+HVJ0FBB9+MBYvvviCqI+FhQX69O4OF5damDptHoDSuafdu/eJ8ilDZDI53N3dsPDrWaIjQfz9feDv74OmTZvgv+9PFs6pXbtuC3r17AqpVKo3HvO6ymk0Grz37hvo2+cl4T17+5qo5+WJli0i8NHE6UhPL53DvHAhHUDp2cDfLJgt2n47MDAAgYEBaBIahI8/mSGsQl6xaoPBArBWq8XqNZuEtoWFBca+M1q0DbmNjTV69eyGxo0aYsrUz5GdnWv0eyIi88ItoImqkEpZLLx2dHSotG94WAi+mj9D+E/fJOH9+zL8dvCI0B4+bECFSUJdr40aJloh8PDJNWMsLS3xzlujRJOEuvr0joKfr7fQTk5OhUpVrLdvbOwBIfEEgMGD+oiKv7rc3Wpj/AfvmDTGp2HP3nhhGxknJ0eMeWOkwb5ubq4YMXyQ0E48eQaZmTdMuk+vXt0MrrTx8/VG795RovckEgnefmuUwTP6hr7cH+7ubkL74sXLBu8du++gaEugEcMHiSYJdXXp3B5R3TsZjEVERGTOmNcBySnnRatLmzZtYnCyUiq1woTxY+HsXMukcf7TEhOTRLnZuHfHGDwDTiKRYNy7ZUXWwsL7os+qMszriIiInn3FOrmOo4N9pX1dXZ0xZ9ZkIa/r2aOr3n579uwTXrdsEVGh+KurbZsWiHyhldDetXufyVsTv/rKYFHxV1dDf19Ede8stAsL7xvcLpp5nXGNGvmjT7nc7SF7+5oYPWpYhfeHDR1o8OzliIhQdOjQVmhnZFyDXK7/Ybzk5FRkZFwT2pGRrQyeQe3n513pnCURmS8WgImqkL+/j/A6Oma/sGXM40pOThWdI9EusnWl/aVSK7RuVbaFYFJSskkJZURE6XZ1hlhYWKB9+zZCW6Uqxq1bt/X21X2qsmaNGujTR3/i9FBAgJ9ozFXp9Omys4hbNI8wODH3ULvI1qLzUZLOnKukd5kundtXer1juT8aGjfyh69PA4P9rayq44W2LYT2tcwbBj/3ZJ3z4Rwc7PWuZtI1oH9P0fdIRET0b8G8rnTbQV1DX+5f6b2tra0xoL/+iaqn7ZROXufh4Wb0qA5/fx80aOAltM+cZV5HRERkLnx86guvTycl46zO79DHcf++DKl/rTAFgEgjeR0AtGtX1ic7OwdXdc4NNkQqlaKzsVyjY6SobWhxAvM64zp1bFdprtSqZVPRAwQWFhbo1rVDpTE7tG8ramdeN/D5lPs3OcBA8bcsbhu9K9OJyLxxC2iiKhQaGiicKZKZeQOjXnsPL7RtCX9/X3h6eqB2bRd4uNeGtXXlhcWH0v7aTgQonQTctHmn0a+5ebNsAi837x5u384y+CTaQ55GrgOAh85KBADC9oXl/anzpGFokyCTzjRp3boZjiUkGu33T1IqlUi/fFVo3759Bwu/XWL062xtbYSn9y7ofF6VqeNR+c+7/PU6lawOesjNrbbwWqFQICcnV+8Ton+mlX0+TZoEGd0Cx8vLE97e9XDlyrVK+xEREZkb5nXiMdvZ2SI8LMRo7Datm+PnpauN9vun6Y69WrVqJuV1unXWtLRLJt2HeR0REdGzLzSkbIeMoiIlPpwwFS1bNkVQYAC8vDxRu7Yr3N1c4WBkdfBDaWmXRA9onTx5xuickKKoqEIM3fNr9anr6YFq1Spf7+XhUT6vk+ntx7zOOGN59sM++QWFAEpzNmN/C7i71xa1b968rXe3oAs6u744ONgjOLhxpXElEgmaNw/HzZ36H+QkIvPEAjBRFXp5SD+cSEwSzplQKIoQF38IcfGHhD6WlhI0bOiHwMAAtG/XBoGNK/7Sfyg3957wWqUqxm6d7WVMde9evtEExtXFudLrAERbEAJAiVpdoY9crhCtbPEol+QYUj5ZrQp5efnC9s9A6dY4ySnnHylGfn6+0T52drZGJ+dsbW1gZ2crFJadnByNxq1Vrk9JifHPx622q9G4QOlW3ZwoJCKif5t/e14HAPn5BcLruiYULoHSvE4ikYjyqqqgu2L75s3bomL6o369IczriIiIng9hYcEY0L8ntm7bA6D0vNWEhJNISDgp6levXl0EBzVC82bhiIxsZXA1aE65POHQ70cfeUy6eZYhrrX1b/2sq5aTI6ysqgvHsZWUlOjtx7zOOFPyNKdaTsLrWrVMyeucRG19eR0g/nxMnSd1czMt/yMi8/F/AAAA///s3Xlc1PW+x/H3MIMgIAwICgiCKIhbtnhSszq2qJVWV6vjbTnlbbHllLllJ83MrJOZ15bbNe2cR3VOnVb1tGqbp7J7rpprhYBAmgayK7KDg3P+sH4ybDMgMOPwej4ePB7z/c339/UzMywfv5/f7/tlCWjAjXx9ffXoIw/okgbLr9Rns9UpNXWv1qz5QDPuf0grnnlRZeVNX51XUVFxyjGVlTsfw2xxfu2I2WJ22qe8wb/lygSk5PqEVUcq76T32tVl9+r3c+kMFzo1/HzCXdzLpeEkMQAAXUFXz+skx9whvJm95xqyWCwu54Adqays6c/BVbW1xxwKrE0hrwMA4PQx/Y6bddON17W43dfBg9lav+ELLV7ytObOW6QDzSzT3Nw+rq3hSl5nMTvP2Uwmk8wu9COvazmvkyRXUrv6XVzJBV3dfaP+5+Pq3sue8NkA6FzcAQy4Wc+eYZr/0CxNmTxJm7dsV2raXmVl7W9yaT273a6P13+uyqoqPTx/dqPn6yelfWP7aOmTj7Q6Hqs1pNXntFXDJPpoM8sJNnTEhaseO1pAd8e7N2bcd4dGjRzRqjEsvp79K9jf38+h7WrRu6zs1CesAQA4HXXlvE5yjPnoL0vdOWO32z0itwsMDDAm0saPG6tpt1zf6jEa5k6ehLwOAIDWsVgs+q9p12viFeP05ZffKH1vltLSM1VYWNRk/927U7Rw0VKtWrm80YofDdsrX1jW6jwtILDlVUTaG3md5+Z1kmN8DS/0a05zF54C8F6eXX0AupDk5EQlJyca7crKShUWFuvgzznasydd6zd8YVwx+OWX/6fxl47Vueee7TBG/eTxUG6eQn9Z1sVT9egR5LA0TF5egUvnHTqU15FhuaRhon7kyFGvW0qlR48gmUwmY5+a/PxCl87Ly3ftcwQAwFt1xbxOkoKDexiPc13M1woKilRTU9NRIbksNNRq5DoFhUXkdb8grwMAdHW9eoVr6tTJRru29piKioqVm5uvvRlZ2vDJRmOeKicnV2+8uVa333aTwxgN55AqKis1cOCAjg/+FJDXebbgHic/n3wX51PzXMz/AHgPloAGPFRAQIDi4mJ1wfmjdNed0/TcM0/Iz6+b8XzKnvRG5yQPPDnRaLPVKSMjq1NibSuTyaQBA/oZ7fS9mS7tE/Lr3nruFBQUqH794ox2+t5MN0bTMXx8fNQ/Id5oZ2buMyYNm1NZWdnskkcAAHRVXSGvk+SQGxUfPqKff85xek5Tr90dBiadnITNytqvmppaN0bT/sjrAABoH926+So6OlLnnDNcN1x/jf68eoXi42ON5/c0kds0LPamp3v+HBJ5nWer/z2XX1CowsJip+dkZvzYkSEB8EAUgAE3sdlsqq6uNr6c6dcvziGB+Tm7ceI1fPgQWert4/bW2++5FMvx48eNr842bOgg4/GhQ3nauHFTi/0LC4v12edfdnRYLjnn7DOMx9u27VJqWobTc+x2u/FeO5t08wRDhgw0Hu//6aC2bdvVYv/1679ol71tAAA4nZDXnXBGvbxOkt5+9/0W+9vtdr3zrmuvq6OdXS+vKy+v0Hvvr3d6Tv28zh3vd2uR1wEA4Nzx48cd8jpnf+P9/f015ryRRvvAwexGfXqGhSopsb/Rfu/9DaqsrHIpFnfNIZHXebbBg07mdXa7Xe9/sKHF/nszftTOXd93dFgAPAwFYMBNtm7doYlX3mB8OftDLUmVVSeTw9Am9goJDbXqorFjjPbmLdv01df/anHMv7+xRuMmXKtxE67VlGumqarK+aRlexo//iLHeN5c2+x+KjabTatWv+oxV+5NnDheJpPJaK9+6a8tJvDFxYf1+1vuMd7vN99a1xlhnpKLL7rAof23195pdiIwLy9fa9Z91BlhAQDgUcjrThg58hxFRIQb7c8//0q7dv/QbP+1az9UVtb+zgjNqdGjRqhPdJTRfued91q808Vmq9PDjzxpvN/zFzzeGWGeEvI6AACcKy0t0+RrbjHyuqXLnndaEKyfc4WFWpvsc+WVE4zHxcWH9cqrb7RY1N29O0WXT5xq5BopKWmtfCWnhrzOs40ePUIhIcFG++P1n2v/Tweb7FtTU6uXX/57Z4UGwINQAAbcZNSoEYqJiTbaz//Pn/XiqldUfPhIo752u11r1nzgkEgl1rtysL6bbrxOAQEBRvvxJ1botdffaVSYLCgo0rPPrdbLr7xhHJs0aby6d/dv82tqi/4J8brg/FFGOzv7kO6ftaDRkjnFxYf10ILH9dXX/5LZbO7UGJvTN7aPJk4cZ7RTUtI0Y+Z8ZWQ6Lqlit9v19ab/16w5C5Wbmy/pxF4qEyZc3KnxtsXQoYM0fPhQo52WnqG5DyxqtA9zalqGZs5e2GzxHgAAb0Zed4LFYtF1115ltG02m+YveFwbPtnoMMFZU1OjF1e/qhdXvypJHpHbmc1m3XLzVKNdcrRUM2bO16ZNm2WzOW5RkpaeoYcWLNGWLduNY5MnT+q0WNuKvA4AAOes1hBdNPbkRVMbN27SwkeeVNaPTRc3d+3+QZ9+9k+jnZTU9N6+4y79rcM2aOv+8bEeW7JcxcWHHfpVVVXr3TUfaOGiJ40cZOiQZA0bNrjNr6ktyOs8m7+/v66cdPKigtLSMs2d+4h27PjOod+v86nbd+zu7BABeACL8y4AOoLZbNYDc+/VQ/OXGJN4a9Z+qA8/+lSJAxIUGdlbISE9VHK0VOlpmco5lGucGxvbR+efP7LJcWNionXvH27VsqdfkHRikvHVv76l115/VwkJcbKGBCs3r0C5ufkO++0OHpTkkBx1phn3TVdqWoaR9ObnF2rGzPlKSIhT7169VFZWpvS9mUaSNvGKcfrgw0/cEmtDd02fpvT0TGMSd//+A7r7ngcUGmrVgP7xqqioVHZOrkpLyxzOmzXzLvUMC3VHyK026/47dc+9D6qy8sQdIhmZP2rarfdpYFJ/hYSEqLCwyPiPUI+gIA0enKSt3+50Z8gAAHQq8rqTpkyeqC1bt2vnzhNLzNXWHtPy//5fvf76u4qLi9Exm02ZGftUVl4uSbrk4gu0Y8d3Kjla6pZ467vkkgu167sUbdjwhaQTE2mLlzyt7t39lZTYXyYfk3Jy8hoVRq+ZMkkjzz3bHSG3GnkdAADO3Tn9ZqWl7dXBX+4a3bJ1h7Zs3aEBA/opOjpS4T17qrKyUgcOZCst/eR2YH5+3XRVvTt96/P19dWDD8zQ7DkLjTxo0zebtembzeoTHaWYmCgVFR1Wdk6uampqjPNCQoL14LwZHfhqm0de59luvOFabdm63ZiTLDlaqnl/XKy4uFhFR0WqvKJCaWkZstlskqSxY8foq69aXlEIgHfhDmDAjYYOSdbjS+ard+8I41hNTa1S9qTri41fa+26j7Rx4yaHScKAgAAteGiWegQFNTvuhPEXa+6cP8jPr5txrK6uTpmZ+7Rt+25lZx9ymCRMTEzQwofnytfXt51foWvCwqxatnSRInv3cji+b98Bbd6yTSl70o3i7xWXX+pw1627de/ur2VLFzW6EvPIkRJt275bqWkZDsVfs9msu+6cpgsvGN3ZobZZbGwfPf7YHxUUFGgcq6urU2pahjZv2WZMElosZs2bd5+s1qaXOwIAwJuR151gMpn06CPzdPZZZzgcz8sv0NZvd2rnzu+NScKBSf11/4w73RFms2bPvEtXX3WZw7Gqqmp99/0e7d6d0miS8OKLLtD0O27uzBBPCXkdAADOhYQEa9lTizS0wT64WVn7tWnTZq37x0f65NN/OhR/Jemeu29VcnJis+MmJMTpqacWKSKip8PxnEO52vrtTv247yeH4q/VGqKFD89RdHRkO7yq1iOv82zduvnqiSUL1K9fnMPxAwd+1uYt2/TDD6lG8fc/p07WiHPOdEeYANyIAjDgZsPPGKJVK5fr9zddp7Cw5idYLBaLrr7qMr38l+eUmJjgdNzLL7tEL61aobFjxzhMGNYXERGu22+7Sc8984R69Qpvsk9niY+P1Ysrn9bk/7hCAQHdGz0fGmrVzPvv1KyZdznsu+sJQkKCtWL5Y7p/xnTFxvZpso/FYtaoUSP03LNPOCyhc7oYPnyoVq1crt9eeJ4slsbL+SQl9teypYt03ujfuCE6AAA8A3ndCYGBAXryTwt1z923Kjw8rNHzvy4p+PSyxQoMDGhiBPfx8fHRjPuma9nSRTpj2OBm886kxP5auGCOFsyfJYvl9FpYi7wOAADnIiLCtWL5Y5o96+5GBbaGRp57tla+sEyTJo53Ou7ApP76y0vP6nfXXS2rNaTJPoGBAbrqysu0auVynXXmsDbF317I6zxbeHiYnn/2T5o6dXKT73/PnmGaM/se3X7bTW6IDoC7mUqOFDa/2zxOWVH+QYd9EboCe02lqrZ96LSfOTxWfsnnuTzucftxZedkn0poHs9utysra7+yftyv0tIyHTt2TL0iwhUV1VuxfWNkDQlu07iVlZXak5qhoqJi1dYek9UarJiYaCX0i/O4YqokVVdX64eUdBUWFsnX11dxcTGK6xvb7ISnp9m374B+zs5RSclR+fv7KSw0VIMGJTncaXE6KzlaqpSUNB0+fETWkBDFxcWob98Yj/xeOp30jenrtE/V9o9kr65w2i9gzO8kPg/1CO4p/4Dm76oDWqu0pEg1LvwMeiPboUzV7nO+DKxf8miZw53/PpOkg9kHTzUsj0Zed4Ldbtee1L06lJOrYzab+sb2UXy/vi3e9exJCguLlJG5T0cOl8jkY5I1JFgDBiQ43Ol9OiOv6xixfWJdeg+Plx9R9e7PnPaz9IpXt6Sml4rvKvz8AxVsde/FLfAu1ZVlKis97LyjF6v69gPZa6uc9gsYfY1kbrkolleQp9ra2vYKzSPl5uYrNS1DJSVHVVFRobDQUEVF9VafPpGKjOzdpjHr6uqUmrpX+QWFKi+vUI+gIEX0CtfgQUkeWYgkr/NsNTW1+iElVQUFRbKYzYqL76v4uNNnPtVTRUdGN/nzWLtvl2yHMpo4w5H/WRPkE8iqOvWZTD4K7x3r7jC6BM/7SwJ0YSaTSYmJCS7dCdIaAQEB+s2I02eZD39//9Mq3oYSEuKUkNDy1aGnM2tIsM4f07UnoAAAcIa87gSTyaShQ5I1dEiyu0Npk4iIcEVEeG/RibwOAADXREX1VlRU2wq9zTGbzRo2bLDce4+v68jrPJufXzeWeQbggAIwAK9UXl6h6uoa5x1dZPG1tPlOHQAAALRdTU2tysrK23XMppYwBAAAQMcirwOAzkMBGIBX+ttrb2vtuo/abbyzzhym5U8vbrfxAAAA4Jpvt+3Uo4uXteuYn3+6Rj4+Pu06JgAAAFpGXgcAnYffjAAAAAAAAAAAAADgJbgDGIBXiozspbPObL9dVOLj2ZgeAADAHYJ7BLVrXgcAAAD3IK8DgM5DARiAV5oyeZKmTJ7k7jAAAABwioYPH6rhw4e6OwwAAACcIvI6AOg8LAENAAAAAAAAAAAAAF6CAjAAAAAAAAAAAAAAeAkKwAAAAAAAAAAAAADgJSgAAwAAAAAAAAAAAICXoAAMAAAAAAAAAAAAAF6CAjAAAAAAAAAAAAAAeAkKwAAAAAAAAAAAAADgJSgAAwAAAAAAAAAAAICXoAAMAAAAAAAAAAAAAF6CAjAAAAAAAAAAAAAAeAkKwAAAAAAAAAAAAADgJSgAAwAAAAAAAAAAAICXoAAMAAAAAAAAAAAAAF6CAjAAAAAAAAAAAAAAeAkKwAAAAAAAAAAAAADgJSgAAwAAAAAAAAAAAICXoAAMAAAAAAAAAAAAAF6CAjAAAAAAAAAAAAAAeIl/AwAA///s3UFKw1AYhdG8Gq0rkIJtFuEuXLaLcAOlzhyJoFRInetAkSZ/ez1nBXeQwYOP9yIAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAECIvnoA/NaiLbphPVTPAADgCJzrAAAyrG5W1RMAgC/cAAYAAAAAAAAIIQADAAAAAAAAhBCAAQAAAAAAAEIIwAAAAAAAAAAhBGAAAAAAAACAEH31AAAAAAAATs/740PXtVY9A+CkHN5eqyfAjwRgAAAAAAC+GV+eqycAAH/gCWgAAAAAAACAEAIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIfrqAQAAAAAAzOf67r56AkC8diHBUcfXBwAAAADwj7T+snoCADAhT0ADAAAAAAAAhBCAAQAAAAAAAEIIwAAAAAAAAAAh/AOYszEexm73tKueATCJYT1UTwCY1Xa3rZ4AMInN7aZrrVXPAJjN/mPfjeNYPQPg6JZXS+c6zpYbwAAAAAAAAAAhBGAAAAAAAACAEAIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIT4BAAA///s3Xl8FOX9B/DPZpPdZHNnNwlJSEhCIBQExRNUsFiFoii0Vm2LtmpbrbSv/oo3iigIlCpQtKK0Albl8OBQgkBADkEERY6CQY6Q+97N5tp7d3b6R2DYyR4kPxI3Lp/3Xzwzk2efmd15zZfn+zzPMAFMRERERERERERERERERBQimAAmIiIiIiIiIiIiIiIiIgoRTAATEREREREREREREREREYUIJoCJiIiIiIiIiIiIiIiIiEIEE8BERERERERERERERERERCGCCWAiIiIiIiIiIiIiIiIiohDBBDARERERERERERERERERUYhgApiIiIiIiIiIiIiIiIiIKEQwAUxEREREREREREREREREFCKYACYiIiIiIiIiIiIiIiIiChFMABMRERERERERERERERERhQgmgImIiIiIiIiIiIiIiIiIQgQTwEREREREREREREREREREIYIJYCIiIiIiIiIiIiIiIiKiEMEEMBERERERERERERERERFRiGACmIiIiIiIiIiIiIiIiIgoRDABTEREREREREREREREREQUIpgAJiIiIiIiIiIiIiIiIiIKEUwAExERERERERERERERERGFCCaAiYiIiIiIiIiIiIiIiIhCBBPAREREREREREREREREREQhIjzYDSAiChULFr6BqqoaAEB6eh88+cSfg9yi3u2TDZuxa9deqTx3znRERUUGsUVERERE7RindA2vFxEREfVWJpNZ6q8DgIyMNMTGxgSxRb0brxdR6GACmIh6xKbNn+Ff/35HKq/5cDkiIiKC2KKeV15RhaKiEwAAh9MZ5Nb0fg0NBhw9dlwqu93uILaGiIiI/LkU4zrGKV3D60VERPTDYLXZ8N13p6RyXv8cxMXFBrFFPU8QBLSZTLIy+cfrRRQ6mAAmoh7hcrlgMpmD3QwiIiIiukiM64iIiIhChChP6IkQg9gYIiLqSXwHMBERERERERERERERERFRiGACmIiIiIiIiIiIiIiIiIgoRHAJaCKibnL1VZejb0Y6ACAlRRvk1vR+ef1zMG7szVI5PFwZxNYQERERncc4pWt4vYiIiKi3ioiIgE6bdL6sighia3o/Xi+i0MEEMBFRN/nN/fcGuwk/KGPG3IgxY24MdjOIiIiIvDBO6RpeLyIiIuqtNJoo5OT0C3YzfjB4vYhCB5eAJiIiIiIiIiIiIiIiIiIKEZwBTORHW5sJDXoDXC4BOl0SkhIToFAogt0siKIIg8GIxkYjVCoVkpO1iI2Nueh67XYHjMYmJCTEIyoqshta2v1cLhcaGgxobm5BbGwMUlJ0UKvVwW5Wt2v/jhuhUIQhMTEeSmXvXELPZDKjsdEItVqFpKQkqL7nJWHsdjvqGwwwmcxISkqATpuE8PD//2Otp+4tIiIKvu5+ZnSn5pZWGAyNEAQ3tEmJ0OmSLvxHFyAIAozGJkRERCAhIb4bWtn9LpW4DgBaWlphtVqRmJgItVoV7Ob4ZLfb0djYBJcgQKdNhEaj+d4/v7vv0Z64t4iIKPhEUYTD4YTT5US4MhwqVQTCwnrHHCdBEOBwOiEIAiLCI6BSRXRLX6LT6YIouqFS9c44AkD7d+J0QhGmgCpCFbKvg3C73XA6nQgPD++1/XXn2iiKIiIiIr73dvbEPepyueBwnD+n77sPkuiHqnf0ehD1EqIoYkvhDmwp3IFvv/1Oti85WYfRo0bg3nsmQasN3HmwpXAHduzcAwBQq1R4adY0AO1J5U2btuFMaTnq6hpgMDTC7RYBAPFxsfjXkgV+6zQam/HBh+ux54v9qK/Xy/YNGTIIt95yE24bf0uXHurnznfr1p049u13EEURCoUCmZkZuGn0SPzql3dBrVZh9fvrcPjIMQBAelof/PX/HpHVc/TYcaxY+ZFsW2OjUVZ+dvocn0Gvr/o6OnX6DNas2YD9Xx2E2WyRtqvVKlw5/HJMnDge11x9RafPu6csW74SJ08VAwDy8nLx8O/v93nc6dMleGvZe1L5L3/+A/r2TUdxcSneXfEhjhw5Jp2nRqPBVVcOw0MP/hpZWX39fvb+rw5i3fqNUvm28bfgxzfd0Kl2z5n7D7S0tgIAhg0djPsm3+332ObmFqxdtxF7vtiPyspqabtSqcTllw/BzWNGYdzYMZ0K7Hbu/AKbC7cDAMLCwjBv7vOdau+RI99i/cef4sA3h2G3O6Tt0dEajBhxNX4+6XYMGjSgU3UBPXNvERFR79Adz4yeiOucTifWf7wJO3buwenTJbJ9ffumY/SokbjnnomIjenaQKTDR47hk0824+sDh2G32wG0x7DDr7gMDz04GcnJWnz99SGsWVcg/c2sF59GZOT5wX+M69p1Nk4RRRFPT5sllW+/7VbcNPp6GI3NWLV6DXbv3odGYxOA9nhpyOB83HvPJIwYcbXfz/6+4jqXy4WNn27Fzl17vf7v0z83G6NHj8TPJt2O6OgLJ4N7S1zXU/cWEREFn91uR21dPZqaWuByuaTtCoUCcbEx0Om0SEpKDFiHxWJBZVWNVO6XlYnISDVEUUSjsQltbSY47A7YHQ6Iols6Ln9gnixe6qipqRl6vQGtbSaIoihtDw8PR0JCPNL6pAT8e//n24Dm5mY4ne3nG65UIjpag/T0NMTERMPpdKKktFz6m4yz288RBAHFZ0pl9brdblm5uqoWdeENPtswIC83YP+O0+lEXV0DjE3NcDgcsn0xMdHQapOQrNMGfUKN1WZDRUWVVM7K7Ot38ktlZTUsVisAICY6GhkZaXC73dDrDWjQG2Cz2aVjo6IiodNqkZqa7PccHQ4nSsvOf0fn6uyM2tp6tLa1AWj/7vv3z/F7rCiK0OsNMBqb0GYyy/ZpoqKQmJSA1JTkTvVtdeV6eeqOe7TjOdXX69FoNMJiscr2RUaqkZiYgD59UhHO/joiv5gAJjrLaGzGrNnzcezYcZ/79XoD1q7biK1bd+Gxxx7F6FEj/dZVX6/HwYP/BQAp8NpQsAVLl62QdXR5cguC3/p279mHfyxagtbWNp/7i4pOoKjoBDZv/gwzX3wayck6v3Wd09LSipmzXsF/jxbJtouiiIqKKry34iPs3rMfr7z8Iiora6TzMQ/ybn9LS6u0359Dh4763O6rPk/L316F9z9YD8HH9bHbHdi3/wD27T+AW35yE554fAoiIoI3Aqy0tEK6DoECKpPZLLteFqsVhVt3YMHCN73O02KxYM8X+/HNwSP43UP3YdLE8T6DyiGD8zF7zgJYrTYAgM1m71RH4bfffid1agPAxDvH+z12+449WPzGMrS0tHrtEwQBhw4dxaFDR7Hx0614btpUpKf3CfjZDXqDdB06M8NDEAT88/WlKNhY6HO/2WzB9u27sWvXXtx7zyQ89OCvL/ifjJ64t4iIKPi685nR3XFdeXklZr40H+XllT73V1XVYNXqtdhSuB3PTpuK4VcM9VuX9HluN15fvAyfbNjstU+vN2Drtl34ct8BzHzhaTQam2RxiCDIOwEZ17XrbJwiiqLsel17zZUoLi7FM8++hKamZtmxgiDg6LHjOHrsOO6YMA6PPPxbn51p30dcV1xcir/9fRHKynz/Ds+UlOFMSRkKNhbi8alTcO21Vwb87N4Q1/XEvUVERL2DXm9AZWU1hA7JS6D9WdzS2oaW1jY0NhqRm5vtt0/G5RJk//8X3AJMJhNKSiukwXO+eOR0ZQRBQElJGZp99JO0f54LBkMjjI1GZPRNR5/UlABneZ7B0IiKiiqv83UJgnSumX0zkJgYLzuf1JTkDu0W/fZ3nGO2+I/fRH8njvakd1l5BVwu33GvyWSGyWSGQd+IvLycoM5edgsdvvcAsbrFYpWSrsqwMLgEAadPnYHJbPY61mq1obKqGs0tLcjJzvK5mo1KFQG32w3T2aSsyWRGamrKBWdIu91u1NXXS9c30G/HYrGipLRMih299lutsFRboW8wIDs7C/HxcYE/uwvX65zuukfPsVptOHOmFFab73Oy2eyora2HwdCI3JxsxMXFXrCNRJei3rE+BlGQNTe34ImnXvBK/ioUCq8HUpvJhNlzFuKbg0c6Xf/mzZ/h1df+7beTMJDPd3+JOXMXyh688fFxGDZ0MPrnZss6WE6eOoPHnpgBo7HZV1USm82Gp6fN8kr+dlReXomZs17p1IO+J7zx5nKsXLVG9vmpqckYfsVQr9Fyn23/HC/OeiVgcNpbHf1vkc/kryer1YbXFy/Fts8+97k/NjYGN42+XioXFZ1ASUm5z2M9bd22S/p3crIOI667yudxGzduxd/mLfKZ/O3oxInTeOyJ51HhMUP4YomiiNlzF/rsJOwYNAuCgFWr1+Kddz8IWGdP3FtERBR8PfHM8HQxcV1FZTWefOpFWYJKrVYjPz8PQ4YMks20NBqb8dz0udIqLIH8Y9ESn8lfTyaTGS/Nno+GBkOX290dLpW4rrW1Dc9On+OV/O2oYGMh3nhzuc99PR3XnThxGk89M9Nv8teTwWDE8y/Mw+7d+y54bGf1xD3aU/cWEREFX319A8rKK70SS74GBjW3tHrNeA3EarHi1OmSgMlff9xuN06dPiNL/ioUCkRFRiIuNkY2kM0tiqisrEZtbf0F6zU0GlFaVuEzkeapsqoaTc0tXW53dzA2NeNMSZks+RseHo7YmBhooqJk343ZYsGJk8VwOp3BaOpFKzlT5jP566mtzYTTxSV+Y9dknVb6t9vthtFo9Hmcp6amZtn11XnU4clstuDkqWK/yV9PDqcTp4tLLhindlV336M2m639nDySv2FhYYiO1iAmJlrWV+90unC6uOSCAx2ILlWcAUwEYOGiJbLOgpzsLDz6xwcxbNhguN1ulJVVYvOW7dj46VaIoghBEPDaP9/Cv5csuOASLk6nE8v/s0oqDxiQi5RkHbTaJERponDuURgZ6T1KrKHBgEWv/uv8aK8+qfjTlIdw/chrpGMsFgve/s9qrP94E0RRRE1NHRa9ugSzZj7jt03Llq+ULYmmVqvxwG9/iVE3jkBiYjzq6/Uo3LoTH3z4MYqKTqC0tCLgOeYPzMOz06bKth0+fBSbt2yXyk89+WeEh3vP4oj1WJrG094vv8badeeXvhs2dDD+8peHkZOdJW2rrqnFa6+9JSXj9+//BmvWFuDuX9wZsL29zXsrP4IgCLjxhutwxx3jkJOdBVEESkrKsPr9dTjqMTBh+durcOMN10GjifKqZ/z4W7ClcIdULty2E48+8oDfz7VYrNj1+V6pPG7sGJ8j8E6eOoPFby6TBbITJozFnXf8FFmZGbDbHSg6fhLvvPs+Tp5sXwJbr2/EvHmL8Oqiud0ye2fN2gJZx2NMTDT++MgDGD1qJCIj1aiqqsH+rw5i1eq10qjK1e+vw6hRI9A/N9urvp66t4iIKPi6+5nh6WLiOkEQMH/BYmk54KioSNw/+W7cddedUtJLFEVsKCjE8rdXwmQyw263Y/6CN7DkzVf8Llm7e88+bNr8mWzbHRPGYcKEschIT4PJZML+rw5i2bKVaG5pxZq1BT7rOYdx3cX5ZMNmmExm5Ob2w32T70Ze/xzExsagrLwS27btkn1Xm7dsx4TbxyI/P8+rnp6K68xmC+Z2GNQ3/IqhmDz5F8gfmAelUomysgqsWVsgzSZ2uVyYv3Ax+udlIyO9c0sWBtLd92hP3VtERBR8JrNZtmQzAKT1SUVKig4qlQoOhwNtJjNqamqlpXlbW9vQoDcgpRMreNXU1EmD0yLVaqgj1YiIiEB4uBIKnE9e+ZqtWV1dKz2ngPYEXWbfdNlg8tbWNpRXVMF2NpFVXVOL2NgY2TLNnux2h2zpXQCIi4tFWp9UaKI1gCjCZDKjqroGVqsNNTV1Ac9PqVQit8Oz0+FwoMrjmqb1SUWUjz4mAD6Xf3Y4HCgvr5D6iNRqFbIy+yIhIV46RhAEVFfXor5Bf/a87Cgrr8SAvNyA7e1tWttMEAQB4eHhyEjvg5iYGKjVKtjtdrS0tKGmtk5aUttqtaGhQY9UHzN1k5ISUVlVIy2LbGg0IqXDbO2ODB6vYImNjfG5asy5Geieyy3HxcYiLS0V0dEaKBQKWK021Nc3SHGSKIooLauARhPlc8ZyV3X3PXqufecGDCjDwpCW3gd9UlNkCeWGBgOqqmsgCEJ73315BQYPHsTloIk6YAKYLnkHDhzG3r1fSeXLhgzCrJnPyJbDyM/PQ35+HoYPH4qXZi+AKIqorq7FuvWf4te/uitg/Xa7A3a7Azdcfy1+c/+9yMvz/76Gjlas/EgawaTRaPDyvBleMyQ0Gg3+NOV3CFMqsWbNBgDtnWzHjh3H0KGDverU6w3YULBFKsfHx+GFGU/i8mFDpG39+mXi4T/8Bjk5/TB/wWJYAiwHAwApKTr85OZRsm1ms1nWUXjzmFGdTgSKooily1ZI5QEDcvHy31/w+vuM9DTMnfMc/vrYdBw/fhIAsGr1Wtx+260+E6S9lclkxgO//SXuv+8e2XadLglXXXU5/v7ya9i+o70DTq834ONPNvn83V02ZBAGDMiVkvs7duzG7x+a7Pe6f777S2n2kkKhwLixY3we9+aSt+FwnA28lEpMefRBTJp4m7Q/IiIC1117JYZe9iP8bd4ifLnvAID2xHHBxkL8/GcTunI5vLS2tuHd9z6UylptEma/NA0DB/SXtvXrl4l+/TJx/chrMPXx58+OlHThraXv+XwHXU/cW0REFHw98czwdDFx3Y6dX6Co6IRUfnzqFIwZc6PsGIVCgYl3/hQ6XRJmvDAPAFBXV4+CgkKfz35RFGXnq1AoMOXRB2XP3qioSNwxYRx+NGggps+YC72+MWA7GdddHJPJjBEjrsaM6U9ArT6/1OGwoYPbVxnpn41/vr4UQPu1efud1T5/dz0V173/wXpUV9dK5bG3/hiPPzZF1lmdn5+H556diszMdGnmrdlswdKlK/DCjCe7cjm89MQ92hP3FhER9Q5VldVSolGhUCC7X6ZsJqRKpYI2SYXEhHicOlUsvfu0uroGOm1SwPfXAoDd4YBGE4WM9DRZAvNC7HaHlNwEgJRkHfr1y/Q6Li4uFvkD+6Po+Am4XII0uHzgwP5exwLtzybP1VK02iTkZGfJEl8JCfGIiYlG8ZlStLWZArZToVBA2+Gdq1arTZYAjo2LQXxc4CWBPdXU1EmD6ZVKJQYOyPMa/KhUKpGV1RcKhQJ19e3vF25ubkGbyfSDGnglCALUahUG5Q+QLWGt0Wig0WgQFx+LE9+dgvvsb7Smtg7JyTqv311YWBi02kTU17f/ZsxmC8wWC6I1Gvhis9llM1p12iSfx9XW1cPmMXtdp01CdoffS3S0Brm52YiMjER1Ta10XpVVNcgL8E7hzurue9RobJINrMjOzvL53uD2BHMEThe3x8p2uwP6Bj3S0gK/jo7oUvM/AAAA///s3Xd4XNW5LvB3mmY0I2nUuyxZtiQXgUCHZsAF22CbGDjYoRgIGBLSICTBBpLQLoEUgg8h95w4JCeXEgMnAUMoBoMNwYFw3btlyZK7rN6nSJp+/pC1tfd0jfZoZOn9PU+eZ7bYs2dNWd4r61vr+5gCmia8d979UHisUqmwatV9AWshzJ1zOVbcugwlJcUoKSnG8ROhU7EBwMyZ0/DE4w8Na5LQbLZIanjdfttynwCV2D0rb0NGxtANdsOHm/2e9/Enn0tSiNxx+02S4K/Y1QvnYsniBWG3WS47d+6VrHh84P57A052qVQqPHD/vcKxyWSWfG7ngsLCAqy41f/Ek0qlwre++Q3JBOLevYHT1V27ZKHwuLOzWwjG+rNp0+fC44suusBvzd6qqhpJavSr5l0pCf6K6fXx+MkjP5TU3Xj33Y0jTt+44cNNkkUId991q2SSUKygIA8/fODbQh819Zh8UnRGq28REVHsyX3P8CeScR0AbBClu730kkqfAJXYFZdfgtlXXiYcv//BJ37vpwcOVOGEaDw6e/ZlARdeTZ06Gfd+685htVkOE21cp1ar8b3vrJSM3cRuuH6JZLLtwIEq2Gx2v+fKPa6z2Wz46KOhcUxubjZWPXhfwJq9d37jFlRWni8cf/mvbZIJ40hEo49Go28REVHsWSxWIVgEAGmpKQHT4CqVSkyeXASDXg+9Ph5xcXGSIFIgarUKJVOLhxX8BQYW5w/ePzQaNQoK8gKeGxcXh1xRUKrHZPJb19Ttdgu7NAEgTqNBUWGB3zS6arUaxZML/f63aHI6XegUtTEnJ8tv5ptBeXk5iIsbGveFWog4FuXm5gSsX2zQ65Eumi9yOl0Bf3cZ6dLdrh3tgdNAd4h2/6rVKr8BULfbLfk8tVqtT/BX+j6yJfN1XV3dwo7cSEWjj7a2DZWrMRqT/L73QcnJRqSkJPt9LhENYACYJrS+vn7s2XNAOJ4zZxYmBRm0AcA377kdL65dgxfXrsFjP3swrNe5e+UKv+ligjlwoEpSv2HO7FlBz9dq4zDrsqH0tXv3Hgg4UTjIaEzC4kXzg153+bKloz6g3L1nv/A4JycLM2aUBT2/pKQYRUVDKy337T8UtbZFw8IFc4L+PjIz01FRUS4cnzgZOCX3gvlzoBetIBRPBoqdOlUvSS0d6HewbftuyfHNN98Q8LWBgZWF1y1dJBw3NDbh6NHw6+/4s2PnXuFxdlYmFi6cG/T82VdeJvTRtb9/TlLzDYhe3yIiotiT+57hTyTjOrPZgqqzu1oBYHaIew8wMC4d1NbWjpOiciWD9ovGdQCwPETWjXlzL5clhe9wTLRxXWXl+cjPzw343xUKBebOHarva7PZ0djY5Pdcucd1Bw4cltQpXL5sacjf8i03/7vw2OPxYPuOPUHPD0XuPhqtvkVERLHX3SOtb5ud7ZtaV0yrjcOMGWWYOWMaZs6YJgl2BZKZmREwuBeMeHemMSkp5E7jlBRpEMts8t25a7FYJbt/MzMzgl53YGdl4OBYNJgtFkmd11RR8M0fpVKJZONQcP1cq9OqVCpDfsZpqdLduf1+gvvAQFaepMSh3c8dnV1C+mgxj8cjSf+cmup/J7vZbJGkfs7Oygg5f+vdh3p6RlZDWu4+6h1AD/X78j7HbneEVQuZaCJhCmia0KqrayU3y0surozK6xT5SQMTSs3ZWqrAwA3yzbfeC/kccTq3js4uNDW1+Kz+r66pFR5XVMwMmVKvoCAPkydPwvHj4e12loP4vSuVSrzwuz+GfI44HldTUxeNZkVNsN2ng3JEg6ju7h54PB6/AzuDQY/586/Ehg2bAAA7d+1Da2s7MjOlKw0/EU0gpqWm4MorLvX7uuJ0egUFeSFrIwLArFkX4fU31gvHh6pqUFISWZ0Xm82O6uqh32xl5fkjrikcrb5FRESxFY17hj8Rjetq6iSLh3bt2ocjovuRP719fT7XENfMBQbKLQwyGpNQXj496DVVKhUuvvhCNLznP+AYDRNuXBfG+CAnO0tyHGgyVO5x3SHRuA4ALp91Sci2/ltlBfT6ePT2Dvweq6pqsHxZZOU9ojKui1LfIiKi2BMHgnQ6LeLj5S8JEa/zrasaitvtltxLbDY7ToWxmEilUgkBXqvVCkB6P7d6lV8LlJ3Q+xxxsDDaBto9QKlUorm5NeRzxCmKHQ4HbDabLLVnR4NOqw0ZVPXO+iLOuugtPT0NprNpu51OJ7q6upHmld65p8cEu30oO0xGuv/0z967Z8PZxW5MSoJKqRSC+BaLFVlZIZ4UhNx9VPz7AgY+i1AZmsSLJgav4a9eMtFExQAwTWht7dLUEDkhVipFIj5eJ0lHEa6OjqGUKjabHR+IUpuFq6urWxKkslp7JSuhsjIzwrpOdlbmqAaAxalOGhqaJMG34T7/XJCRkR7yHHEKFY/HA6fTGXDC7NolVwsThS6XC5s2f447br9J+O9OpwuffvaFcLzw6nkBU/+1i1LShFrJN8i73kZbe+Qpfrq6uiSLNHJyRjAyPSsafYuIiGIvGvcMb5GO67wn5rb886thX6O723eFvvhv4b7frKzwxn9ymXDjugBp7yTnZEjPcYh+t97kHNeJP8u4OI1PO/xRKBTIzcnG0WMDGV3G2rguWn2LiIhiz2F3CI+1cdEJGAYq2RCMw+GQLD4yWywwW4LX4vW5hp97v9Mh/Vs4bRvtQKr4O3G73RGl3HU4nOdMAFicvjoQjUYDpUIh1AEOljEuJSUZmjMNcJz9rts7On0CwOKxTYLBIMkGI2Z3DH0XSoUi7J3sWp1WWNhnF32fkZC7jzoc0vZ0dnVHcI3A42qiiYgpoGlCs1ikq4gyMkMH4oZLpRpeisBB3queImH2Wg3mvTosPc3/KjJv4UwOyclsHt7A2du5lvIjnDSSw/kdlZVOkaRX3LR5i2QAunXbTskEYLA04OIdKYHqeHhLNiZJBvOWEXyfZnNkv9lgotG3iIgo9qJxz/AW+bgudG3hUPzde8RjO+/Jo0DCCVDKaaKN61QBgq/Sc2IzrhP/XjIy0sMu8yKubTeS7zM647ro9C0iIoo98aKhcAJxEYmg5JnTFXiHZ7hcfnaJincyqlSqsMadUftcAvDebRkJOT6/0RLuWCnc85RKJdLThsZVJpMZNskOaadkYVqweTjxdzGcNOZxos0kTtfIgqVy91E5fl9yXINoPOEOYJrQvFNC9PSYkZ0l/y7gSIjbNqkgD7/+1RPDvoZ3+g+dTroayxJmIMx7sibaDAa9MEF1zdXzsPKuFcO+hvd7nWiuXbwAh8/WQ2toaMLevQdRWXk+AGn9uMoLzw9a91pviBdWsoZbq6W3t08ygB1J6hXv58pRLyYafYuIiGIvGvcMuXiX3Fj7X78Z9r1Eb/BNqSYe73gv9AtkuDtURorjupGTa1wn/hyHs+vVJKobrB9j47po9S0iIoo9pUoFnA3mOINkyxhtKqU0MFs4KX/Y9x5/AUOlamiflsvlClj6SyxYuuFoUIqC0jqdDmWlU4Z9jUCZSiaK9PQ0NDW3CMft7Z1CabiOjk5hoZ9KpUJqauDMQ+K6wMGyyXgT/2a8f8vDJXcfVXotepgxvQwazfB+L97XIJroJva/uDTheQ/QmpqaIxq8RIO4bY1NzUhJSR7xaqrExAQoFAphMNHS0hbW85pbQtf0kFNKSrLQtta29lFPVTgeXHXVlfjTn9cJE2ufbPoclZXno729Ezt27hHOW7ToqqDXSU42Ct9FS5i/A/FAdvAakfJOs9kURn2ZUKLRt4iIKPaicc+Qi/e90Nrbi7KyqSO+blJiovC4Jcz32xzm+E8uHNeNnFzjOqPod2i19qKnxxRWfcHGxmbh8Vge1wHy9S0iIoo9jUYt1EK12ewhzh493gEph9M5rB2YgahV0uvabPaQi+Bs9tH9XDSi4K3NZoNarZYEIik0nU4LY1ISekwDC+w6OjqRm5sNhUKB9o6hUhupqclBd4GLvwuXywWn0xlWcF1ck1k9zOCqTxtk7qMar/a7XC4YDP5TYBNRePgvNE1o08pKJMfV1bUxaokvcducThdqa4+O+JpKpRJTiouE47q640FrUwBAb28vTp2qH/FrD2cgUFY6NGlz9OiJMTXQP1fodDosXDBHOP7yX9tgNluwafPnwmq/ZGMSZl85K+h1pokm0OrrG8LaLVJVVSO9xrSSAGeGZjDoUVxcKBxXVx+J+FpCe6LQt4iIKPaicc+Qi3dAqqamTpbrFhUVCI9bWtvQ1ha6Pmtd7bERvy7HdaNLtnFdqfR3eMhrzObPyZP16BbtAB5r47po9S0iIoo9g8EgPO7v7x8ztT1VKpUkq4Uc5QgA30wZvb2hr9srw2t73MHnBcXEwTiPxxNWG8mXuNSezW6HyWSGxWKVlD0JVbbFOzAaTjagvr5+yU7dBFEfi4TcfdT7PcnVt4gmMgaAaUJLTU2WTBps/Pgz9IgmOPzZum0n1v7hJaz9w0v4y7q/Ra1tFRUzJSu3/vq3d8N6ntvtFv7nz8yZQzXETpw8jZ079wa93kcffRrRDTfZKF2N397eGeBMX4Mp7YCBAcy7730U8jkejyfke59olixeKDy22Wz47B9fYPOn/xT+tnDhXGi1wVepXnjh0Hdhs9lDfhdutxvv/P1D4TghwYAZ08uCPCO0ysoK4fGR2mPYuWtf0PNPnz4j9NG1f3jJJ71gtPoWERHFntz3DLmkpaagtGQoy8y7721Eb29fyOeJ7z3+Fu2J77Eejwfvvb8x6PWO1B7Dnr0HhtHyARzXxZ4c47oLLiiXjIHefvuDkK/71vr3JMeVorFhJOTuo9HqW0REFHvGpKFMJ26PBy2twTNHuN1u1Nc34HT9GZyuPxN22bPI2jaUQaOnxxT2a3k8noD3nYQEaTCupTV41ha3243WtvawXlfMewez3eEI+7mJiYmStNThZvMYfN+85w5ITjZKMtG1d3SivX1oIadBr5cEV/3x/i7Cyd7ofU5SUkK4TfZL7j6q0Whg0A8FgVta28Kq6cvfF1FgDADThHf9dYuFx1ZrL/78/14LeMNoamrB87/9A95+ZwPefmcDWsPYZRGplJRkXDXvCuF467ad2PLPr4I+5/U31uPqRV/H1Yu+jmXLV0pWjg2af9VsyfFf1r0ZMMDb3NyC9e9siKD1QG5etuR486dbwn7urMsuQl5ujnD85pvvor6+IeD5TqcLjz3xK+G9/+zRZ4bd3vGouLgQFefPFI7XrXsTp0+fEY4XL5of8hqXz7oYublD3+V773+M2rrAO4def2O95LtasnhByMnIUK6/bpEk7c3Lr7wRsH6hw+HAb194UeijO3buRWKidEAbrb5FRESxJ/c9Q07XXbdIeNzR0YmXX3kj6CTFvn2HsORrtwj3n0OHqn3OmTXrIkkK3w8/2owTJ0/7vZ7NZsdLL70eUds5ros9OcZ1KSnJmDd3aAy0/0AVNm78NOD5u3bvw6effSEcT5tWgvLy6cNtukQ0+mg0+hYREcWe0ZgkSYHc1toedJFPQ0MTmlta0dLShpaWNp90snIS7+AEgDP1DUEDVQ6HAwcOVmHX7n3YtXsfmpqafc7RaDSScZ3FYkVHR+BFd41NzXAMI3g7SK1WSxaEBXsN3zaqkZqaIhx3d/egs7Mr6HMam5qF971v30Eu7sNADej0tKHfUHdXNzq7uoXj9PTUkNfw/i7MZgva2gPPU/eYTJLv2mDQIyFhhAHgKPTRjMx04bHD4UBDQ1PQNpjNZuzes1/4jQUaVxJNVAwA04S3cMEcyarxjzZ+il/+6gWfoOj2HXvw8E+eQmfnwA3ZYNDjjtuWR7Vtd9x+E/SilU/P/OJ5rHvtTZ+baWtrO1743R/x0stvCH9buvQan/QxAFBePh0VFeXCcXVNLVY/9KSkthcAHK6uxY8efBxtEawmBID8vBxJ6o6/vfku1jy/Fl99tR01NXU4dvwkjh0/iTNnGn2eq1KpcNedtwjH3T0mPPCjn+GLL7YKae7E7f/po09j27Zdwt9uvHFpRG0ej5YsGdotIk7fd955MzB5cqG/p0h4fxcmkxmrH3oSW7Z8JZlYs1is+O3vXsQrr/5V+FtKSjJuuumGkb4F5OXmYOnXrhGOjxw5itWrn/QZBJ46VY+f/uwZHDh4WPjbPStvk6yIHBSNvkVERLEXjXuGXK5eOBdTp04Wjt/5+4f4+dNrfCbd+vr68db69/H4k78Sxj3lM6fhvPNm+FxTp9PhuqVDwS+TyYzVq5/A7t37Jed1dHTip48+g127g++2DITjurFhpOM6ALjj9q9Dr48Xjtc8vxavvPo/sInqwTmdLrz/wcd49LFfStIE3r1yxUiaDyA6fTQafYuIiGJPoVBIFpE5XS4cqa3zydzndLpw6lS9ZHdjVmYGtNrg9XNHQqfTISNjKFBltlhRXVMLq5+UyJ1d3aipqRPKYKjVKqQHSO+bnZUpOT5+4hRaWlol8y9utxunT59BU1NLxO0XjwUsFiuOHDmKjs4uWCwW9Pb2Cf/zJzcnW7KY69jxk2hsbPYJgNvtdpw6VS+5x2dkpLNm8Fnp6WnCuMbt8Qifn0qpRGpa6AAwAOTmZEEl+jxPnjyNhoYmSZDd4/Ggta3dpwxgXl4ORioafTQ9LVXy+2xpbcPRYyd8Fju43W40N7dK3ldCggGJIwxqE4030VsKRXSOUKvVeOThB/DjVY8JKcX+8fmX2LZ990D9UwVw/Pgpn9qnK+9agezsrKi2LT8/F/ffdw9+89x/ARi4ab/y6l+x7rW3UFxciGRjEpqaW9HU1CIZaM2YXiqZaPP24x9+B9+//xGhVkdt3TGsvOcHKCudAqPRiLa2dhw9dgIAkJiQgBkzSrF9x55htV2n0+GO22/CH//0qtD2jRs/9dllMG1aCX7/n8/6PH/BgjnYu/+QcL7JZMZTTz+H+HgdSkumQKFUoKGh2SdAvXzZUlx6SeWw2jqezZ1zOV784ys+v99F11wV9jUWLpiLvXsP4uNP/gFgYKf807/4D6x98WXk5+fCbrPj+IlTkolDtVqFB3/8PaSJViOOxHe+fSeqq2uF3cdHj53A3d98AGVlU5GQYEB9fYPP//mZM3sW5szxXwsvWn2LiIhiT+57hlw0Gg0eeegBPLjqcWFl+hdfbsUXX25FXm4O8vNz0N7eiTMNTZJ7qtGYhEcefiDgdW+/7evYtn0Xjh4dGLt195jw8E+eQmFhAXJzsmGxWlFdXSsE8ubNuwJbtgTPfOGN47qxQY5xXUFBHr7/vXuw5j9+L/xt3Wtv4Z2/f4iioklQKpWoP31GEmAGgFtvuREX/dsFI3sDZ8ndR6PVt4iIKPZSU1NgMpvRdjYDn9PpQm3dMcTH66CNi4Pd7kBff78ksKXVxskS3AplUkEerFarECjt6+vH4cNHoNGooY/Xw+Vyod/W77PgrahwEjQajb9LIikpERkZ6ZIx0en6BjQ3tyJeHy/U3R28ZmpqSsgduP7k5eVIyiqYzGaYzL6lUCovPF8S7AUAnU6LSQV5kqwzDY1NaGxqRny8Dhq1Bja7DTabXfK9JBgMo/K9nCu02jgYjUk+47qUlGSovT7zQHQ6HSZNypd8F41NzWhpbUN8vA4KKNDXL637CwA52VmSNOYjIXcfVSgUmDy5EEdq6uA8Ox/X1dWNrq5u6LRaaHVaOOwO9NtskkC3Wq1GcZgLIokmEi65IQJQVFSAZ3/9hCTFRm9vL/bsPYA9ew743IxX3LoMy2782qi0bdE187F61X2SNLoulwt1dcexc9c+nDnTKAlQlZQU4/HHVgccTAIDEz/P/PwnkvoiLpcLh6trsXXbTiH4q1ar8PDDP0BycnJEbV9241LME6XaHa4Hf/Rd3HD9Ysnf+vr6sf9AFfbtO+QzSTj/qtn49r13Rvx641FcnAZXL5wr+VtiQoIkBXI4Vj34fSxdeo3kbx0dndi//xCqa2olk2l6vR5PPLYal8+6OPKGe9FqtXj2109I0g66XC4cPnwEO3bs8ZkkvPiiC/DQ6vuDXjMafYuIiGIvGvcMuRQXF+LZZ5/0SRvY0NiE7Tv24Njxk5J7anKyEY8/tkpSjsFbXJwGv3j6UZ8doKdO1WPrtp04ePCwMOkzkiAex3WxJ9e4bsniBVi96j5J7TmrtRdVVTU4ePCwT/D3thXLce+3vhF5w71Eo49Go28REdHYUFQ4CZmi3bbAwBiiu8eE3r4+r8CSFqUlU3yCltGgVCpRVjrVZ8ehw+FEj2mgLrA4+KtQKFCQn4eUlOBzbIWT8iWpfYGBOr09PSaYTGbhmkmJicjNiew+lmAwID8/F8oIs9+kp6dh8tmFY4MGgtN96DGZ0N9vk3wven08pkwpimq2nXNRhp+d4OkZ/neHByJ8F6LP1uVywWKxwmyx+AZ/c7KQn58bWYMDkLuP6uPjUVo6VTJWBYB+mw09Z68pDv5q1GpMKS6K6q5/onMVdwATnVVaMgV//tML+Mu6v2HT5i2wWKw+55SXT8ddd96CygvPH9W2LVm8AOeVT8fLr/4Ptm7dKaSNEcvISMcN1y/Gshu/FtYNr6KiHC+uXYP//vM6fPX/t/usSCwtmYLvfucuVFSU41//2h5Ru9VqFR5/dBWWLF6AjR9/hqbGZpxpaApYc9ibUqnEAz/4Nq64/FK89vpbOHio2m89r9KSKbjl5n8f0aTkeHbttVfjrfXvC8fz58+GTje8FMZKpRI//uF3ceXZ7+JQVY3POfHxOsy+8jLcvfI2ZGam+7nKyCQlJeL5NT/He+9vxNtvb5CkjhmUn5+L5cuW4rqli8L6PxbR6FtERBR70bhnyKWsdGDM+fob67Fp8xafhYbAQKmRBfPn4LYVy30CWv6kp6fi/77wS7z2xnps2PCJz1grLS0VK++6FUsWLxAyegwXx3VjgxzjOmBgDDRz5jS8/Mob2LZtF+x2aVo9hUKBCy88D3fdeSvKZ04bcbu9RaOPRqNvERHR2FBYWIDkZCMaGv2PPdRqNdLTUpGbmz0qwV/x65aVTUVbewdaWlrR32/zOUehUMCYlIjc3GwYDAY/V/E9f0pxEZISE9HU1AybXTpPoVQokJWVidzc7IhqAA/Kyc5CSrIRzc0D7e639cPhcIZ+4lnp6WlISEhAQ2MTurt7/Nb2jYvTIDMjA1lZGUz97IfRmAStNk6Yi4qP10WUwnjguzDgTEMTerp74PYzxk5KSkRebo5kM5Cc5O6jBoMe5TOno7GpGR3tnXA4fX+bKpUKaakpyMnJ9gkWE9EARXdXm++/CCSb9pbTfic2xjOPrRd9Oz8IeZ4qvQDaaZeHfV23x40zDWdG0rSw2Wx2VFXVoKW1DS6nC6lpKSguLvSpxRELvb29qDpci/b2DtjtDiQnJyE/PxfFkwsjnrzs7jHh0KFqdHZ2IdloRGFhPiZNyh9zK/Pa2tpRW3ccXZ3dUCgVSDYmYerUYmRlZcS6aWPetm270H9218PMGWWSWjWRaG5pxdGjJ9DV1Q2NRoOM9DTMnFkW0QRkJDweD6pr6tB4dmCZnGxEXm6OpP7bcEWjbw3HpPxJIc/p27UBnn7fxSne9FfcDIyx/hsLiUlp0OlZ/4XkY+puhy2MPjgeORvrYD8euhyEdtosqNJD/3sGAKfPnA59kgyicc+Qy+Cux5bWNlgsViQmJCAjMx0zppdCrY5sra7NZsfBQ4fR2toOtUqFwqJJKCoskGS8GAs4rouc3OM6i8WKw4ePoKOjEy6XG6lpKSgrmypbKY9QotFHo9G3hqMgryCs8aPb0oX+fZtCnqfOLEJc6aVyNO2cpdUZkJQs/yJTmrj6e80wmzpDn0hhsTvsfgOA0dDfb0NvXx+cDgdUKhXi4uKQkGAYE3NYvX196O+3welwQKlUQqPRICHBMKKgtMViRb/NBo/bA51Oi/j4eKjVoxfkDsfgjlOHwwG32wO1Rg2dViup5Ur+Wa1WIQCs1Wlh0OtHdL3B78LucAAeDzQaDQwG/ahms5O7j3o8HlisVthtdrhcrlHv99o47Zj492U8USiUSM8qiHUzJgQGgKOMAeDAxnIAmIhotDEALD8GgEluDACfmwFgIqLRxgCw/BgAJrkxACyv0QwAExGNJgaA5ccA8OhhCmgiGvdsNjvMZous1xTXiyYiIiKi0eHxeNDR0SXrNY3GxFHdFUFEREREAxwOp6ybp1Qq5aimASciGssYACaicW/Hzj34P0/9RtZrbv5kPeuXEBEREY0ys9mCW1Z8S9ZrrnnuKVx4wXmyXpOIiIiIQqutO4re3j7Zrpebm4283BzZrkdEdC5j9IKIiIiIiIiIiIiIiIiIaJzgDmAiGveSEhO4q4OIiIhoHFCpVLKP6/R6vazXIyIiIqLw6PV6qFXyhSji4uJkuxYR0bmOAWAiGvcqKspRUVEe62YQERER0QgZDHqsee6pWDeDiIiIiGQwuWhSrJtARDRuMQU0EREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE4wQAwEREREREREREREREREdE48b8AAAD//+zcsU0DQRRF0ZlhEG6AlUMk+i+HjMiJcwckBuwOEEgrvvf5nApe+LV3NQIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAECIWT0Afmv00ZbnpXoGAAArcNcBqXrv1RMA/tXjnO1yqV4BsD53HVsmALMpu6dd9QQAAFbgrgMAyND7aBoJANwWT0ADAAAAAAAAhBCAAQAAAAAAAEIIwAAAAAAAAAAhBGAAAAAAAACAEAIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAISY1QMAAIAM58NbOx/fq2cAbMPXZ/UCAAAglAAMAACs4vvjVD0BAAAA4O55AhoAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAghAAMAAAAAAACEEIABAAAAAAAAQgjAAAAAAAAAACEEYAAAAAAAAIAQAjAAAAAAAABAiFk9AAAAuG1z/9oelpfqGQB3qQ//7gMAAH8jAAMAAD8bQ4AAAAAA2AhfcQAAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBBXAAAA///s3EFuwjAURdHvOB1UoIr9b5IBnTUm3UJVESwe56zgzWL7ShGAAQAAAAAAAEIIwAAAAAAAAAAhBGAAAAAAAACAEAIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAghAAMAAAAAAACEEIABAAAAAAAAQgjAAAAAAAAAACEEYAAAAAAAAIAQAjAAAAAAAABACAEYAAAAAAAAIMQ6ewD8VWutTufL7BkAh/i+XWdPAHiqvn7MngBwiLH9zJ4A8FRL79WqzZ4B8HBjjKraZ8+AfxGAeSGtPk9fs0cAHEIABt5N764iQKaxbeWhEHgny9KrNT+aBPLc76N2xzpelC8zAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBACMAAAAAAAAEAIARgAAAAAAAAghAAMAAAAAAAAEEIABgAAAAAAAAjxCwAA///s2YEMAAAAwCB/63t8pZEABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgQgADAAAAAAAATAhgAAAAAAAAgAkBDAAAAAAAADAhgAEAAAAAAAAmBDAAAAAAAADAhAAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGBCAAMAAAAAAABMCGAAAAAAAACACQEMAAAAAAAAMCGAAQAAAAAAACYEMAAAAAAAAMCEAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgQgADAAAAAAAATAhgAAAAAAAAgAkBDAAAAAAAADAhgAEAAAAAAAAmBDAAAAAAAADAhAAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGAiAAAA///s3XdgW9W9B/CvhrWH995xnA0pM4EyQgdtyXjQAkkIEKCFQktYr31dlELpoA1ktbSU9rXMBl4hJQMIK6yGEbYdrzjesq29ra37/pB1da90NZzIZP0+f0nWydXRvVJ0dH7n9zsUACaEEEIIIYQQQgghhBBCCCGEkOMEBYAJIYQQQgghhBBCCCGEEEIIIeQ4QQFgQgghhBBCCCGEEEIIIYQQQgg5TlAAmBBCCCGEEEIIIYQQQgghhBBCjhMUACaEEEIIIYQQQgghhBBCCCGEkOMEBYAJIYQQQgghhBBCCCGEEEIIIeQ4QQFgQgghhBBCCCGEEEIIIYQQQgg5TlAAmBBCCCGEEEIIIYQQQgghhBBCjhMUACaEEEIIIYQQQgghhBBCCCGEkOMEBYAJIYQQQgghhBBCCCGEEEIIIeQ4IT3SHSCEkCPF5/Nh374P2PuLFp0JmUx2BHs0dcPDw+zt4uJiqNXqaXuut956GwzDAADmz5+H4uLiaXsuQgghhJCpcjpd7FhFpVJBJis4wj2ammAwhGg0CgCQSMQoKJi+/ns8XoTDYQCAXC6HUqmYtucihBBCCJmqiQkfQuEQAEBWIDvmxiqRSAThcAQAIBJhWucbA4Eg/AE/AEAilkCjmb65QULIsYUCwISQE9bIiAHLV1zC3u/p7kB5edkR7NHULTjpFPb2H7Zswpo1qzO2b2trR2/vQQBAZWUFFi9elPNzrVy1Bl6vFwDw7DNP44ILlhxCj499h3MOCSGEEDJ9Oru6EQgEAQBz58xCWVnpEe7R1HR198BudwAAKivKMWvWzIztPR4vfD4fgNikol6vy/m5BgaHYLXaAAAN9bVobGw4xF4f24LBIJxOFwBAJBKhtLTkCPeIEEIIIQAwOjYGi8UKIDYuOtbGKuPjRgyPGADEFtt9YeFJGdsHgyG43W4AsTFJcXFRzs9ltdkwNBRLENFqtZg3d/Yh9vrYdjjnkJDjFQWACSHkBPLMs9uwceNmAMDSpRdR8PIQ0DkkhBBCyNHAbDZjaDg2sVhaWjKlADCJ8Xi86OjsBgBIpRIKABNCCCHkiJiYmMCByWQDiURCwctDQOeQkFS0BzAhhBBCCCGEEEIIIYQQQgghhBwnKABMCCGEEEIIIYQQQgghhBBCCCHHCSoBTQghxzCZTMbeFolER7AnhBBCCCHkcIhEgFg8OZ6jYR0hhBBCyDFMxM7T0XwdIeRIoQAwIYQcw0xGw5HuAiGEEEIIyYMF8+cd6S4QQgghhJA8qKmpQk1N1ZHuBiHkBEcloAkhhBBCCCGEEEIIIYQQQggh5DhBAWBC8sTr9cIfCOTlWD6fD0aTCcFgMC/Hi2MYBm63O6/HzNdrnk6RSAQej+dId4NMUTAYRCQSOdLdIIQQcgKKRqN5+w5iGAbBYBDRaDQvx+MKh/P7PTkdfZwO+X7d5PNxrLy/CCGEHH/C4XBejsMwDIKh0LR8p+V7/oNhGDAMk9djTodIJHJM9JPw0biOkGMDlYAmJ5Q77vghQuEQAODG716POXPmIBqNYvful/Dhhx9haGgYRpOJHXictXgRfvSjH6Y93vPPv4Cnnv4/vPXWf2Cz2QAAlRUVOH/J+bhyzWqcffZZOfftxd0v4W9//V909/RgZMTAfpE2Nzfh7LPPwpVXXoEzTj894zFefuVV7NixEwDQMmMG1q37PiKRCP7+j0fwzDPbsH9/B1wuF/R6PS644Hxcs/ZqnHvuOTn3EQDGjUb84x+P4sUXd+PAgV54vV7o9XrMmzcXF33j67j66iuh0WiyHudPf3oInV1dAIAvf+lLWL58KVwuFx588M949dU96OruhlgsRkvLDFx44Vex7ubvQaFQ5NzPiYkJPPSXh7F9+060t+9HKBRCQ0M9Fi48GXfcfhtOOmnBlF53Jj+78y64XC4AwOJFZ2LVqpVp24ZCIaxatQbBUOx9eO8v787Yl9de24N/P7cdANDU1Ijbbr2F9/iPfvQTTPh8AIBvX3ct71hmswW/vPdXvPaffPIpe7u9vR3rbrlN8Hl/de890Gq1afsVNzw8jA0bNmPfBx/gQM8B6PQ6zJ8/HytXXobLLv1W1n+f7PnnX8Azz2zD3nfehdFohEQiQU1NNc4771ysWnk5Fi06M+sx3t+3D48//iQAQK1W4ze/vjdj+507d+Gll18BAMydOxffveE77GOfxzkkhBByaEYMo5jwTgAAiouLUFpaAgBwuz2w2+3w+wOxhWqT4zqJVIJ5c+ekPZ7H48XY2Dhsk/8WAKRSCfQ6HcrKSlFRUZ5z3zxeL0ZGDHC7PfD7/YhGY32QyQqg0+lQXlaK0tKSjPuB+f1+DA2NsPdbW1sAAHa7AyOGUXg8XgSDQYjFYuh1WpSXl6GysiLnPgKxiZtxowkWixUejwehUBgSsRhKpQLFxcWoqqrIafwldC3C4QgMBgNsdgcmJmKPqZRKFJcUo662BmLx1NYim0xmGI0mOF0uRCJRyAoKoNaoUV1VyV77fOjr62cDzHq9LuN1ZxgG7fs7wExe3+bmJmg06rTt7XYHzGYLAECpVKCurpb3+OjoGDweLwCgsKgQ5WWl7GOhUAj9/YO89m7OAkevx4uenl7B550xowkSiSRtv+IikQgMhlHYbHZ4OdespKQEtbXVU75mHo8H4+Mm2O0O+AOxz0H8M1BWWoLy8rKsx3C53BgfNwIAJBIJZsxoytjeYrHCZrMDANRqFWpqqnmP9/UN8IIAgWBiMWs0Gk17DquqKmhcRwgh02hs3AjfRGxuo7BQj+LiIgCx8ZnT6UQgEEAgGIwP6yCRiDGrdWba44VCIYwbTbDb7PD5/WAYBmKRCCq1CsVFRaioKM/puxGIzS+Njo3D64klfsTnDAukUmi1WpSUFqO4qCjjuC4QCMBgGGPvNzc3AgCcTifGxozwTkwgFApBLBJBo9WitLSENw7Ild3ugMVqhdvlRjAUgkgkgkwmg14f++7N5bvM4XCy36VyhRw11VVgGAYWixVmixU+nw+RcARyuQw6vQ7VVVWQy2VT6qfb7YHRZILD4UQ4HIZYLIZKpURxUREqKyshFudnz1yTycyOrQoKpCljr2SDg8PsGKistARlGa5BIBCEwTAauyMCmhobeO8Bp9MFqzU2VyyTy1CbNCYZHBpGhLOokZsEFI1G0dc3IPi85eVlGcebXBaLFWazBROca6bX61BdXQWZbGrXLBgKwWQ0w+6ww+fzIxqNQiKRQKVSobioEOXlZVk/U+FwmPf7pra2OmM/fD4fxsZi40CRWISmxgbe45/HOSTkWEcBYHJC2frU0/B6Y1/8/7ViOXw+P75/8y3o6OgUbF9eJjwp4XQ6cf31N2L3Sy+nPDZuNGLr1qewdetTuOKKVXjg/vUZB0JOpxMrV63BO++8K/h4X18/+vr68dhjT2DVqpXYsGE9FHK5YNvOjk48+ujjAIAlS87HlVdegcsuW419H3yQ8pzbtj2Hbduew1VXrcH963+HgoKCtH2Me/TRx/Hzu+6Gw+FIOd7eve9g79538OeHHsaGDevx5S9dkPFYb7z5Fl58cTeA2HlubW3BN7+1EgYDf0/bDz/8CB9++BH+/e/nsGXzRpx66ilZ+/nJJ5/i6rXXYnBwiPf3wcEhDA4OYdeuF/DLe36BL3/5S1mPlQu3282e93ffeS9jAPjNN9/GK6++xt5/dtu/MwaA//q3v+P5518AANx5509THv/XM8/CYrECAL7+tQt5x/J4PGy/hAwMDGJgYFDwsZ/99CdZfxjsfullXHvtd9jPFAD4TWa89toevPbaHrzwwou4f/3vUFxcnPE4AGA0mXDDDTfh9dff4P09Go1O9vMxPPLIY1i58nJseOD3UCqVaY81ODjEvu7KioqsAeD29v1s+6VLL+IFgKf7HBJCCDl0DoczMakiK4Ber0N39wFYJyeskmWaXOjvH8DwyGhK9kE4HIHVZofVZsfo2DjmzpkFeZpxWFxvbx9Gx8YglMgQDIZgsVhhsVih02kxZ3Zr2gBrMBTC2GTgC4gFgHsO9LKTIHHRaBR2hxN2hxPj40bMnTs7pwkdl8uN7p4DmJicbI2LRKPweCfg8U7AMDqKhoZ61NXWZDxW8rVQqpRoa9uPQIBfzcbl9sDl9sBstmBWa0tO35OhUBidnV2wO5y8vwdDIQTtDtjtDpSXl2L2rNasx8pFOBJhz7vT5coYAHY4HLDZEuNis9mccTJpdHQMlsnzlDyBBQAOpxNmc2xcJ5VKeBO/3H4J8fn98I37BR9rbGzIOiHn9/vxWdt++Hz8Y8SvmcViwaxZM6FWZ58sYxgGB/v6MTo6nvKZ4n4GDKNjmD27FcoMiwz8fj/7umUyWdYAsNfrZduXlpakBIAtFit8fuHzFI0yac9xUVEhjesIIWQauZwu2CfnmgoKpNDptOg92AdH0vd/XKY5LKvVhv6BwZSs3yjDwOPxwuPxYtxoQsuMJuh0uoz96h8YhNFoEnwsFA7DZrfDZrdDo9FgZktz2nFiKBSGyWxm7zc3N6KvfwAmk5nXLsowcLlccLlcMJvMaG1tyWm+LhQKobe3D87J5IQ4hmEQCARgMplhMplRVlqCpqbGjIu6Jnw+tq9arRaVFeXo7j4AV1JFQZ/fD5/fD6vVhoaGepTlsCCPYRgMDg5j3Jg6no1fG4vVhjmz8zOuE4nFvPNeXl6edo42EonAaDQhysQScphoNGMA2GazscfW6/UpCwB8nPOoUatTAsA2mx2BNFUVGYbh9ZtLr9dlDV7GF7U5nPzPD3vNbHY0NTawCy2yMZnMGBoaRjgpSz0SicDtdsPtji3Ya2pqRGGhPmO/uK+rqirz4tVgKMS2l0gkKePn6TyHhBwvqAQ0OWH19BzAty5dmTb4m44/EMAl37yMF/wtKyvFueeeg0WLzuQNHp944p+4eu21actihMNhfPvbN/CCv9XVsWzHL3/pArTOnAmpNLFO45//3Ipbb70jp34yDIOrrr6WF/wVysx99NHHceON3896vC1b/oh1t9yWEvxNnmAcHh7G6tVXYufOXTn1E4hNQF562eqU4C9XR0cnLvnmZSmDxGSdnZ34r4u/lRL8Vcjl7KA5HA7jxz/5GZ7bviPnPmbyXyuWs7d7DhxAW1t72rY7du7k3d++fUfaUjculwuvvbaHvb9s2UWH2dP86ezswtq117HBX6EfD9u2PYe113w767HGjUYsX3ZxSvC3oKAg5bhbtz6FSy9bBX+aiTtCCCEnpmg0ira2/WmDv5n09vZhaNjAfh9LJGLodFoUFRVCzhnnuFxufPpZe8YtOoaGhmEYTQR/YxnEWpSUFEGjUUMiSXyvuVxu7N/fmXO5v4GBIV7wVyIRIznRxOly47PP2rOWSHY4nGhr358S/E3OtohEYivn062eFxIOR9De3pES/OXyeifwWdv+rNudRCIRtLW1pwR/RSLwzqXJZMHBvv6c+5hJWWliom9iwsdmjQgxTy7CS3efKxyOwG5PjKPzmbV8uCLRKNrbO1KCv1xujxeffRarqpMJwzDo6OyGwTCWMsYVJ71hXS43Pv20DT4f/31ICCHkxBZlGHR2dqcN/mZisVpxoPcgG/wViURQKZUo1Ot5i+6CwSC6ug+w1dyEGAyjvOCvRCKBVqNBUWEhVCoVb77C4/Ggu+dAzuO64REDL/grNKfi9njQ0dmd9ZjBUAgdHV0pwV+hjGSzxYqurp4ple/tPdiXEvzlCofDOJghWM/V3z8oOK8nEScWqk1MTKC7+wBbYeVwFBcV8s6t3Z7+t4Ld7mCDv0Ds/KcLLgKAjXOskhwDqZ+X/v7BlOAvVygUQs+B3pT3jJDRsXH09Q+kBH+T31+BYBDdPQfY7HFCyNGBMoDJCWvjxs2w2WwQi8U455wvoq6uFtVVVbwgaUvLjJR/95eHHsaHH34EACgsLMTdv/g5rrpqDfvF5/f7cd9967Fh4yYAwIsv7saf/vQQvve9G1OO9Z//7MXLr7wKIBZI3bzpAVx66bd4K/T7+wewcdNmPPLIYwBiAbAlS87D5ZddmvH1vfvOu/AHAigoKMCPfvRDLF36DbTOnAmDwYDXX38TP7/rbrZs9b+eeRYXXLAEq1cLZ67u3fsO7r4nkUVZXFyMO3/2E5xzzhfR1NSIjo5OvPzKK/jtb3+PYDCIYDCIdbfcjgULFqChoT5jPwHgiSf/Ca/XiwsuWII7br8V8+bNhUQiQVtbO37z29/hrbfeBhDLNP71r3+LzZs2CB4nHA7jxptu5gWpL/zqV7Bu3fdx6qmnIBKJ4IMPPsQDGzbhjTfexPrf35+1b7k455wvorKigh3E7ty5CwsWzE9pFwqFsGvX87y/9fX148MPP8Jpp52a0v7F3S+xgc4vfGEhWmemL28kpLKyAk8//U/e3/75z63Ytu05AMCiM8/A7XcIly/W69Ov2AOADRs3wefz4bprr8EVV6zC3Llz4HA48M477+Fnd97FBvPffPMt7NixE8uWLRU8DsMwWHfzreju6WH/tmLFMlx7zVqcdtqpCAQCeP/9fdi4cTPefe99AMDbb/8Hd99zb9bM3nyYznNICCEkf4wmCxtM1GjUUKtUkMllKJAWAJNzE0ITay63G4bRRDm+2tpqNDbU88Zi40YT+vr6EQqF4fP5caD3oGAp6Wg0isGkkmbJxwqHwxgbM2JwaAiRSCzT9mBfP1pntmR9jcMjse/WiopyVFdVQqvVIBKJwOVyo79/AJ7JEszeCR8O9vWlLYsYCoXQ1d3DBolFIqCurhalJSXQaNQIBAJwOl3oHxhkg7jDIwbodNqcgpbjRiMikSiKiwpRX18LtVoNkUgEj8eLgcEhdnIwHI5gYGCILW0tpH9gEG5OAFalUqK5qRE6nQ5SqWQyg8eI0dFxjI6OZSy9mKvCQj1kMhn7frJYrYIZAgzDsFnPcT6fHy63GzqBTFGbzYbI5GSrVquBSpW+mokQuUyGBfPn8v42bjSxJaX1Oi3q6+sE/61Umjn712Q0IxgKoahQj/r6usnXK4LH48HA4BCcztjkYDAUwtDQSMYs3OERA1udBoh9Hhvq66DTaSGVSiczREwYn5xQDwRiE/ALT16Ql+uXTWtrC2/S2+2OvUYgtqhg7pzZgv+OskQIIeTzY7FY2QVHapUKSpUSsoKCWILE5HeFUIngSCSCocFh9n6hXo+mpgZeVq7b7UF//wAmfD5Eo1Ec7BvASQvmpVTKiEajifK+AKoqK1FbW80f10UiMBlNGDGMIhqNYmLCh8GhYTQ3NWZ9jWOT48+y0hJUVJRDrVbHsik9HgwPj7CL9Hw+HwYGhzCjOf13b19fP6+6RXFxESrKy6HRqMEwDNxuD0ZHx9itI1xuN4aGR9CYw3yd1+tFNBqFQqFAfV0tNBo1pNIC+Pw+dnuOuMGhYej1urTf51ZOxiwQC6jX19WisFAPuVwOv98Pu92B4WEDPF4vu4XI4ZBIJCgqLIR1cv7TZren3TJFKHBptdlRXVWZ8vdgMAi3O3Y+RSIRioqmHgBubm7kBbnjW8gAsd8t6X4fqFSqjMf1+Xxwu92Qy+Wor6+FVqOJXTOfD0ajiXcNhoZGUsaXXC63G8Oc3zdSaayMtl6nhVwux4TPB4fDiZERA7vndF//ANRqVdaqSfkwXeeQkOMJBYDJCWvcaMSXvrQEv7r3HsyeLfxDP5nNZsOmzVvY+xseWI+LL17Ba6NQKHDXXT+DzzeBPz/0MABg0+YtuPbatSlla997fx97+5JLLsbKlZenPGdTUyM2bXwAp592Gt7fF2tvNgmXsODyBwJQyOV47PFH8BVOqePa2lqsWbMap512Cq/k8gMbNuLyyy8VLA931133sKsn6+rq8PRTT2DOnMTE54IF87FgwXx8YeFCXHnVNfB4PLDZbLjvd7/Hg3/cknK8ZF6vF6tXr8Qf/7CZN1A866zF+Pe2f+GKNVez5aIff/xJ/M8P/xs1NamlCHfs2MXbn/XKK6/AhgfW87KozzvvXCxevAg333wrnnr6/7L2LRdSqRTLly/DXx7+a6wfO3fhxz/+n5R2b775NjtJx51Y3L5jp2AAOF76GQCWLxcOoGaiVCrx1a98mfe3vXvfYW+XlpWlPJ4ri8WK++77DW64PpHhW1lZiYsvXoGzzl6Mc845n13Nuv7+DWkDwLtfepndfxcAbrrpu/jVvfew7wO1Wo2vfe1CnHfeufjO9TeymeUPP/w3XHftNYKLNPJpOs8hIYSQ/AkGg1AplWhpaZrSBMwAZ0/Vmuoqwcm1yopySCRidHR0AwAsFptgkM/lcrOBJYVCLnis2KRJDfR6LcbHYxNmIpEIDMNkDX5Fo1E0NNTxJuukUimKi4ug02nR0ZEok2w0mlFfVyu4ZcLwiIEN7IpFIsye3corb6dQKKBQKKDX69DW3sFOQPb1D6CkpDhrPyORKCoryjFrFj8ArdfrcNKCedjf0cUGTseNRjQ01AlOEAUCAYyNjbP3dToN5s+byyuDqNVqJoOpKvT29qWtqjIVIpEIZaUl7MIAi8UqOEHqcDgQDMYmp8ViEbvPs8ViFQwAW6yJoGguJRKTicXilDJ9Tk5mR4FMlnMZv2TBUIgto829voWFepysn4+29g42e3l0bAx1dTWCZcZDoRCGhhIT70WFesydO5s3Ftfr9dDr9VAqleif3EbD5XLDaDRNeQ/rQ5GpLKFIJDrkc0gIISR/QqEQFAoFGhvrUTiFhdVjY+MIxgPHajVmzZqZMm7RajWYNWsmPmvbj0gkgkAgAKPJnBLk83i8iE6OK+QyGRoaUhdZSSUSVFdXQavVsnM9OY/rGAa1NdWo5WyzIZVKUVQY23Kgp6eXzU62mK2oqa4S3DbEbnfwMm+rKitSEjGKigqh1+vQ29vHZq0ax02orChPuxUJ289oFCqVEvPmzuHNF6pVKjQ1NkAmk2F4OBYg9Pl8sFptaRcMcvdAlkqlmDO7lbe1hEKhQFVVJTQaNbq7D6RknB6q4uIiNgDscrkRDIYgk/HLakciEfY8xq8hEJsHFgoAc4PFer0OBQVTD7HoM5QfF4lEGccsmYTDYSgVCsybN4c3BlOrVWhubkSBrIBd3OD1emGz2dOOf4aGhsEg8TmYNauVt4hRrVJBrVJBo1ajp6cXkWgE4XAYIyOjWbftyIfpOoeEHE+oBDQ5YTU01ONvf/1LzsFfAHjooYfZCatzzvliSvCX6847f8pmE5tMZmzfsTOlDa/UTJYJqzVrVmPzpg3YvGkDvv/9m3Lq75o1V/CCv1yzZ8/GD/77dvZ+b+9BvP76mynt3n33PV4Z6f++4zZe8JdryZLzcdVVa9j7//rXsyn7mQjRarX4+Z0/FRwgSyQS/OynP2bvR6NRdHX1pLQDgCefTGRqlpWV4je/vpc32ImTyWT47W9/hcLCwqx9yxU3QNvR0Ymurq6UNtt3JEpO/+AHiVLeO3bsTJmwnJiYwCuvJPYKXr5sWd76mg9z587Bt6+7RvCxivJy3HjjDez9/fvTl4H868N/Y283NTXi7l/8XPB9oFQqsX79fexEdjgcxv/+/R+H3H9CCCHHF7FIhFmzZk4p+OtwONiAqVQiQVNT6p6scWWlpSjiTCCMC+wTmmvJPwDQ6XRobW1Ba2sLZrbMyCnzUaNWpc3UkEqlaGlpZktCMwzDZlhyRaNRjHPKSJeVlabd20yhUPDOic/nT8l4Fe5L+nMpEonQ2Jh4DQyDtNkdRpOZDaoCwIzmprR74NVUV+V1goc7cen1TsAr0EduuecGTuatRaAMdCQSgd12dJZ/BmLB5abGBsH3oUgk4r3volEmpXR43Nh4LPs79u+AlpZmwbE4gFhGijZReWmUE+wnhBByYhOJRJgxo2lKwd9IJMLbx72+vjbt+Eoul6OKs+hIKMliKuM6rVaD5uZGNDc3pv0+TaZSKXnBXy6pRIIm7ngJDBtgTsbNwI1lfApXAxGLxWhsamAr4jBg0u5tnKyutlYwWQSIBZy5W6ak29bB7fbwxnxVVZW84C+XVqvN66KwoqJCXv+FykDbOOWfq6sq2fPk8XgFtyDjbutRXFyct77mS01NddoxWHVVJW9MnW4s7na7eVuh1NRUp61go9frUF6e+E1hsVqzbhtCCPl8UACYnLAuv+zSKQcA33gjESD9+tcuzNhWrVZjyZLz2fvcfX7juGWCn3l2Gx577IkpDTKzWbcu896+q1ev5GXS7t27N6UNd1/WyspKwSxlru/d9F12kBEMBvHW229n7eepp56CysrUFXVx8+fPQ11dYhDbe/BgSptQKMSWCAaA6667VnDP47iioiJce83arH3L1VlnLeb1ccdOfqnnUCjEZvQ2Njbg1ltuZl9zf/8AL8gOAC+//Co8k+V5Tj/tNMyY0Zy3vubD0ou+kfYHAMD/fITDYQwMDqS08fv9ePs/iffcDdd/J+3ELgBUVlRgFef9t2fPG2nbEkIIObHo9DrodKlZl5nY7YlsicKkiSEhxSWJyZ14SVwubolYvz+A3oN9WffinYp0k4RxKpUKpZz9a4X66HK5EZqs6pLLMUtLSqBWJ0qk2TnbbKSj1WoFs0PjNGo1FIpExu9Emn1nuf0vKtRDl2GFPwDU1WV+LVNRWKjn9dGaFNTlln9WKhSoq6tlJz99Pj9cLv4+eTa7nc1i0em0gpnZR5JOp82YAaTT8a9pusldB3eP45KSrOX1amuq2dtutyfrntCEEEJODFqNBtoM8zlC3G4PO58mlUoFq3FwcRcN+vz+lO8g7vgnEAxiYGAor/N1VRnmwIDYIvgSTmDRNVlumCsajfLGHFWVFRmDz7KCAl4VEofAWDFZtixKsVgMLWcM7vcL75nL3UNYIpGgsqI84/NWVlbw9gU+HGKxGEWc+V+bQADYzsnoLSsr5bdPKg0dCoXY8y4SiVBclL/kknwQQZQxKC2RSHi/m9JdM+5YXFZQwPudIaSqqhKiyb13GIZJGQ8TQo4MKgFNTlgtOey1xsUwDK+88Pr7N2Dz5j9k/Dceb2KlVMf+zpTHL1iyBJWVlRgfH0coFMLN627F3ff8EieffBIa6htQXVONmS0tWLT4TFSUZx4cJaurq0u78i9OJpNh4cKT2TLQHZ2pWavc17xw4cmQy9NP6AFATU0NGhrqcfBgHwDg448/wTcvuTjjv2lqasz4OBALmg4Px0rKDQ4OpjzePzAAN2dAKVRSOdnpp2dvkyuxWIxlyy7Cgw/+GQCwa9fzvAzrN958i12xuWzZUhQUFGD5sqVs2ejt23fijNNPZ9tzyz8vW3ZR3vqZLw0N6bOkhB7v7+vHrNZW3t/a2tt5KylzvWbxzN/Ozk64XK6sE8KEEEKOf6pDCKhxx2kOuwPvvLsvQ2uAYRL7hk5M+BCJRHhBY7lcjqKiQjYjwGAYw/i4ERqNBkqlAnKZHAqFHDq97pD6m0uAW6fVsOMNL2fFfpybM3kolUhy2tdUp9XCO7m/sEdg8jGZMkspQSCWXRyfbBLKqgBiJenitDm99qktAMimtLQEIyOx8ngWq403rrZzyj+XlpZAJBKhlFc22sK7XlaLjXfcow032J2OUiFnJ8d9aYL23MndnK5Z0hjO7fagpOToy6IhhBDy+VIos48lknGrdUQiEXz08acZWgv/e+5iJ5lMBr1OB+dk5b5xoxEmsxlqtQoKhQIymQwKuRwarSansU8ybhWMdDQaNVu6eMKbmqU5MTHBZq3G2udyTA2MkxnPPl/qeDaZQi7PmtGs4Gzl4Q8IjxG4i8dUKmXWhZdSqRRKpYI3Xj8cxSVF7HYcLpcboVCITUDgln+OLVRU8MpG22x2VFdXscey2x1sWeRCvT5tpu2RIpPLBPfI5uJuv5J+LJ54z6nV6qzHlMlkkCvk7PE8Xi+N6wg5Chxd/0MR8jkqKZ7a5Ivb7YY/kFgVZbNlL4HHZbOnti8rK8VfHnoQl6+8gh0MWSxWvPrqnpS2s2fPxi3rvoeVKy/PqZxMU1NjTv1qbEwE6oTKoHD3K2vIElCOq69PBICFyuAlK86hXCN3P4pwKJzyePKKvIZ64RKJXNzXng8rVixnA8CffPIpensPsnvU7uCUAF+xPFbOefnyRAB4x46d+OU9v4BIJII/EMCLu1/iHfdoU5GlHI9SqURxcTH7ORGaKEzOpskWVAZi7y0us9lCAWBCCCGQHsK+W2FOWbJwJAJMMasjFAqnTF7NnjUTn3zaxn7vRSJROJ2ulGxcuUyGyspy1NfXsSXmMhGJRFn3aAPAyywNRyKIRqO843NLseU6ucoNDgZzKOWWy7Xg7pPGRIW3QQlxxnu5vHapVAqZrIANzB6ustJSNgDsdnvg8/nY88sd35aWxX5TcAPAZosVzZN7QEejUXYCMXbcoy8AnCljW6hNfK9rrkgkwpZ/BviTwenIJyco46W+qVQgIYQQACg4hIBamFPhhGGYKX+ncP99XEtLM9r3dyIwORcYjUbhdnt4C+qAyczaslLU1FTnNq6DiBeAS4c7/olEhcZ1/D5nS9iIteE/bygUyhiMlWao0sa24Vyv5O3N4rjzeLm8dgCQK+R5CwAX6vWQSiQIRyJgGAZ2uwPl5WUA+OWf4xV/4mWjI5EIPN5YGej49eDOP6bbO/dISt7fWLAN57pyFxFwcT9DOV8zuYwNAIdpXEfIUYECwOSElUMMlSd5MunCr35lSiWk063EO/fcc/DuO2/jV7/6DbZv38ELMnN1dXXhxptuxjPPbMPWrU9kXWGWreQa2y/OnhtCZdcCnP4oczwm97lDOZRyyyWgna1N8vPkktGiVk+tpFA2Z5x+GpqaGtHfPwAA2LlzF269dR2v/POMGc1sputZZy1GTU0NDAYDBgeH8N77+7DozDOw57U9cDpjqw8XnXkGGtLs93ckiXO4ZtlWBybvC8wtsZRO8vs6GBT+vBBCCDmxTHFYBwCIciaodFrNlMvyCn0VymQynHrKQgwPGzA6NpYyMRcXCAYxODQCk9mCk0+an3VSRSwW5TRekkj4k47JE4XcCR5JDhOUsefm/HuBwF+yQ7kWQphD6GtsAjM/k02xUs0KNphvsVhRV1fLL/+sVLCZx4WFesjlMgQCQfj9AbZKid3uYEuB67OUWj5ScrpmWRolvzeyZfYAsfG9WCxGNBoRPAYhhBCSK+6CMrlMllMlCi5ZQWrwtKCgACctmIfRsXEYjSbBIDEQWyBnGB2DxWrD3DmzswZiRTmO65KDyVGG4e3lmBy4y+W7N3WsKBywzTduYDjncV2O7XIhFotRVFQEsyVWKcdmt7MBYG7555LJgG68bHQ8KcZqs6OmugrhcJjNCheLxCg6CgPA+RqNc38r5bKwIbldNM1iAELI54sCwITkqKiocHKCIjbAWrNmNZYtW5qXYzc01OMvf/kTNm/ZiE8+/gSftbVhdHQMY6Nj6OjsRGdnFzvQfOXV17B5yx9w+223Zjzm4OBQTs89MJAop1wksG9FSUkiS2HUMJrTMeOlmgFk3Hcin4qSsogHBgZRVVWVpnW8zUBe+yASibBixXJs3LgZALBr1wu49dZ1vPLPy5ctY9uLxWIsX74Uf/rTQwCA7dt3YNGZZ2DnrsT+wcuXL8PxKnml5PDISEqZ6GTDwyP8Y5RkzqJJt/p0qm0IIYQcf7jZJTqdDjNmNOXluBKJBI2N9WhsrIfX64Xb7YE/EEAgEIDP54fH42EzJX0+P3oOHMSC+XMzHjMSiSIYDGbN1PRx9vASi0QpCwYLpInV/ukWHSbjLtgqyCELJF8KpAVsxnG6vcm4GIZBIId2U1FWWoKh4dhWKRarDXV1tbzyz2VJe6GVlZZiZHK8bLZYodPpeNV0Sssy7512LJNKpRCJgPiwKpDD+ysUCvH2yc7+/sphXJe1BSGEkOMRd8wjlUrRMqM5L8eVSCSoq61BXW0NJiYm4PFOIBgIIBCMLfjyer3sPGEgEEB//wBmz848rxGNRhEMhXhZmEK436UikQjSpABvcqZ0IBDIuqAxeSF+wSFU0TkU3OvjD2RPFAFS+3q4SkqK2QCw0+lCOByGSCRiyz9rNRreoszi4kTZaNtkANhud7BzSIWF+pRrcjzhvr+EEoaEBDnXLJfS2Fmn42hgR8hhy99SGkKOcxKJBK0zZ7L329v35/05FHI5Fi06E9d/59v4xV134qGHHsRbb+7BB/vexeLFi9h2//jHo1mP1d/fn9PE3oHeXvZ2bW1tyuPNTU2CbdMJBoNsBiwAtvzddKutreGtNOvtPZj13+TyeqZqBSdgu++DDzA4OMQv/7xiWdr2O3fuQiAQxO7J8s/xfYWnS2SKpS7zLV4eO673QPbr0Xsw0aa0tCRl4hUAiosSiw6sNlvWHw3jRiN7u2yKE7NH+hwSQgg5dNwJsnyVl0umVqtRWVmBxoZ6zGqdiYUnL8DiRWeguqqSbWOz2Xn7oqUzMZFLm8ReXUIlnpWcvwUCwbSZLLxj+hLHnGqW9OGQc0pPT+Ryfny+vGcalHLGGS6XG36/X7D8c6J94r7FYkU0GoXNGssqEYmA0iwL1w7LEV7QJhKJeHtb53TNkt7TSoH3LHdiOhQKZ80S5k5QZptYT0GTjIQQcsxSJI0bpqOqhEqlQnlZKWprazCjuQnz5s7GqacsZDNJAcDhdKbdU5Url7EfdystoWoxyVVFfLk8L6eNVCr93Bb3cRcx5nJ+gNzO0VTo9To2qBkvA80r/5yUpFBYqGezqr1eL3w+P2z2z6n881EwJuF+pnJ5bzEMw5uHFqp6kxwUzlaqnbv9DI3rCDk0FAAmZArOPvss9vYzz27LeQXU4WpsbMA999zF3h8aGobD4cj4b/x+Px5//ImMbd5973189NHH7P1FZ56R0mbxWYnA88cff4J9H3yQ8ZhPP/0vuN1u9j73nE2nwsJCLFgwn73/6KOPZ2zPMAweeeSxvPfjC19YyMtifXbbNrb886zWVixceDKv/ZlnnsHuRTw0NIz16+9nJxYXL16Eurrc9l3OFXfi1j7FfazzraqqCrNnzWLvP/b4kxnbh8NhPPnkVvb+WWctFixD09rawvs3PT09GY/bsb+TvT2L0590jqZzSAgh5NDp9Yk95F1OFy94Op0kEglaWpohlSYyBnIJ7o6Nj2d8PBKJwGQys/f1Ol1KG71en3RMY0obrgmfD3a7k71fqE895nTh9t9qsWbd23dsNPP5ORRarQYqVeJ732y2sOWfVSoltElbvOj1OignJ7v8/gCGhkbYiSu9TsebSMsHsTjxHjoa9s/lvr9MJnPWhXLjnPefrKBAcMscpTKx/QfDMFk/K15v4nPMvXbpcMeS4UiEFvcRQsgxSscp+cwwDG/B1nSSSCRoamzglV/mBm7T4Y7ZhEQiEV4VEZ029TtSJpPx5ifMJkvGYzIMw1anA/jnbLppOf0PBAKw2zPPaVqtNl7wLx9EIhGvZLPNboeNM6eTXMFQLBajmFMp0Ww2w+lwsY8JVVE8HNxt1OJ7Ph9JWm3i/eH1euHxeDK0jlW/4Y6jdNrU95dYLOYFhrMF+X2c32fKnMZ1R9c5JORoQAFgQqZg5arL2Nu9vQfx8MN/y9j+8cefxJor12LNlWuxadMW3mPBYBArV16Biy+5FBdfcimee25HxmMVFfJXlqXbU45ry5Y/pg0Uh8Nh3Hff79n7arUaX/nKV1LaXfSNr/OyItf//oG0EyMulwtbtvyRvX/qqafgpJMWZO1nvixdmsiW3ffBBxnP6datT+Gzz9qmpR/cLN+NG7ewA+zk7F8gNgDllhLftPkP7O18lRjnigebAWB/R2fWHx3TbeXKxGfqxRd3Y+/ed9K2feTRx3iZ3atWXi7Yrra2ljdQ3cw5p8l2v/Qyb1HD3Dmzs/b5aDuHhBBCDk1paQlksthK8ijDoH8g8/YZbrcb+zu6sL+jC93dB1Ie7+vrx2dt+/FZ234MZDmWKKk8c/IebkLMZgtcnEV2yYZHDLwgKTcbNU4ul7F7mwGAwTCaMXA4NDjMlrmTSMQoKytL2zbfSksTk3DhSARDnC1Gkk34fLxgYj5xq40MDY+kLf8cxz3vwyMjgn/PF26Wt3diImuQfLpVVJSzt4PBEAyGsbRtPV4vbwxVUSH83lIo5LzFEsMjhrTHtNnscLkSnxG1Wp21z8lZxw6nM01LQgghRzOZTIaiwkRAzmAYzbioJxwO40DvQfT09KKnpzelctjg0DA6u7rR2dWd8bsHSC3PnMu4zmq1weNJX4FmbGycN0ZLt71aGWd8YXc4Mo4VTSYzL/s23VhmOuj1Ot7Y1zA6mjY4F41GYRhNP4Y4HCWc8+h0uNiArk6rFdy7mXvex8aN7LXlZgfnS3LGrNPpyuvxp6q4uIhXBnrEMJp2C7VIJIIxzjXTqNVQq1WCbZWc1zk+bkz7PgiGQryxoiqHSkRH2zkk5GhAAWBCpuD0007DhV9NBEnv+sU9uP+BjSlfgP5AABs3bsatt92BnTt3YefOXZg1i78HiEwmQ1FxMfbseR179ryOG757E/7+90fSluJ7+OG/srdbWmbkVKp2cHAIFy1dwdvnF4gFaletWoM9e15n/3blmtWCE1MqlQo33fRd9v7ul17GmivXpqz8GhkZwbLlF6Obk215+223ZO1jPl2z9mpe5sENN9yIrVufSmn3t//9O9bdcvu09WPFiuXsbSdnEindfr7LlycCvfGscrFYjOXTUP6ZW8bc7Xbj2uu+g3fffQ92Thmbz9PatVfx9mq+fOUVeOGFF1PaPfjgn/GDH/yIvX/qqafgwgu/KnhMkUiEK65Yxd7/v389gx/+8MfwJpX3fObZbbj55sR79MwzTscXv3h21j4fbeeQEELIoRGLxaitqWbvWyxWdHR2CU4WWq02tO/vhMVihcViFSyXp1KpYLc7YLc7MDg0jN7evrTjOrPZwtvXVqvJnoHBMEB7W4fg903/wCAGBxMBUo1GnbYsXV1dLUSi2Or4QCCITz5tSynXG41G0dXVAyNn0qWqqpINmH8e9Ho9L0vbYBhD78G+lHG3y+XCp5+2IzJNK/zLOGWeufvVJpd/Zv/OGU9Ho7G+ikTTEwDmToSFwxF0dnWze9odCTqdlrfAIPa+TF0M4XA40fbZfrZkt1QqQQ3ns5issqKCvW0ymdHb25fyOTWZLejuSSzM0Ou0KCzkZ7wLkcv5AeaDvf0wWyyfW6UnQggh+VNdXQURJsc4wSD2d3QJlhv2Tkygq6sHVqsNNrsdwWAwJfinVCrhdLrgdLpgMIxiYGAQ4TQBZavNhgDne0OjTs3WFdLV1S248Gh4eAQjhlH2vlqlSvudVl5exiuN2919QDC7dmxsHP2cuUGNWp33DNZMJBIJr1S2x+NFV3dPypglGAyho7Nr2irz6HRa9nxFmWja8s9xer2eDVxzx6AlaQLyh0Mmk/GCygODQ7Da8p8JnSuxWIwqzrY1DocTPT29KWOwQCCIjo4uXpno6poqpMOdz/YHAujuPsDb7xqIZRx3d/Wwnzlp0vsnnaPtHBJyNPh/AAAA///s3Wl0m9WZB/D/q1f7aku2Y3mLtXnP5jQJTVgGaFhKWcrSIaTAKe2cQ1tKQ0+nU9oO7cChNBTaDlPmTEunZUm6dzo9aU+ZQlkDhRIIJMHEZE9wLDuObe2v9vkgW7EiyZZt2XKU/++TX+nm+mpxdHWfe59nfiq9E5WRH/zgYVx40SVwu92IxWK477778fjjT2LlyhWwWq04evQY3nzzLbgnpOnbuHEDLrvs0qy+vn3/vdi5823s3ZualN71pS/jP374KC644Hw0NTXCYDDA3e/GX555NuO06g03XD/lOFtbWtDvduPdd3uwes1adHevwNIlS7D/wAG88caOjDTNTqcDX//63Xn7uvMLd+D551/ESy+9DAD485+fhqulAytXdsPhsGPPnnexa9fujN2Jt9zySVxxxUenHGcxVVVZ8O3778Pn77gTQGoicftn78BDD38fq1evQjwWx2uvv55eiLr88styBhtnq7OzA52dHXj33Z70bR0d7ejq6szZftWHPgSHw44DBw6mbzv33HWoq8u/EDZTK1Ysx/qPXIxnnv0rAGD79ldw2eXZJ43f7+0paHI1WxUVFXjkke9jw4ZPIhaLwefzYcNNN8Nma8bqVasQkkL4++tvZNTpNRqNePTRR3Kmfx73tbv/Bdu2/Ql9famduj9+7Cd4/Ikn0draAqPRiL1796ZTOAKpOiSbNz8waZ/jFtpzSEREM9fQUJ8K2o6mFt9OnDiJ0RFPKvWvTotIJIJAIJiRVlav12Hx4uwSDbW1izAyOorBsfR7fcf7MTh4AmZzJTQaNRRKJWLRKLxeX0b9sMrKioJSAxsMevh8fuza3QOdTguj0YBYLAaPx5cRrJLJZGhxOfP2YzIZ0dRYjyNHU6dTg8EQdux4C3qdDnq9HlI4DJ/Xl7HIqdfrYJuQAWO+uFwO7Nz5DuLx1OJcX18/TpwYgtFohFKhgNfnQyAQQDKZWtALh8NZJ3hmS6fTQa/Twj/hPaDTaaHPc7rUaDRAo1FnpH+sMJly1u6bLYNBD7O5EsPDqffT6KgHb49mZ7j58Dmr5y1473I54Nu5K/2ePHzkGI4fd8NoNEAul8Pr82WlcXY67JM+P4sXN+HE0FD6te073o9+txtarRZyUUQgGMzIjiQIAhxOe8FjbmxswKFDqUXxkCShp6c3q01He2tBG3CJiKh0DAY96uqt6BsLngaDQezatQe6sdOI8UQCkiTB5zt1oEEURdjttqy+aqqr4PF40usG7oFBDA2dREVlBdQqFRQKRWoNw+/H6OipIK7JaMx5kvR0Op0OgUAAe/e+D61GA71Bj3gsDq/Pl7G2JhME2O3NefuRy+Ww223o7d2HJJKIx+PofX8fVCoVDAY9EokEfD5/Rp+iKMLhyH7Mc62hvg6jI6PpjYderw9v7XwHBr0eGo0GwWAQfn8AiWQCoihCr9PB4y3uCU5BEGA2V8I9MHjqNgh5T1jLZAIqKysyUmfLZLKCNpnNRF2dFceOpebo4XAY+/YdyGrjcjpgsRQ/AJ2L1VqLUY8X3rHXYWR0FG++9Tb0Oh3UGjWCgSACwWBGcLymuhrmyvz1kc3mSlRWVGBkLGOlx+vFzrd3Qa1WQ6VUQpKkjA0VQOo728Q60pNZaM8hUakxAEw0TVarFX/4w+9w440bcejQYQDAsWPHcCxPWrqLL74Q333wOznvq6ysxNYtT2Djxluwtze10HDw4CEcPHgo7+9f/5GL8c9fnvr0al19He6971u49dbbIEkSXnvtdbz22utZ7ex2G37x8y0ZKXNPJ4oitm55Ajff8im88MKLAFJ1GrZvfwXbt7+S1X7jxg343sPfzbp9PmzcuAEDgwO4997707ft338gI3UwkAqw3v3Vr8xJABgArrnm6owA8MRTwblcdeWV+P4P/j19feUcnP4dt3nzAzh8403Yt2//nP2O6Vj/kYvxk8d+hNs/+/n07txDhw6n/74mqqmpxpYtT2TUDs7FaDTixz/6T9zxhS+m+4lEIti9e09W26oqC77znW9n1WeezEJ7DomIaGYEQUBnZzt6evZieOy0RDQWw/DIaPp6Io1Gjfa21rwp31pbXIjHE+nFwmgslnGK9nRqtQptra6890/U0d6KXbvfRSgkZQWlx4miDO1trRl11nJpbl6MRCKZTmmYTAI+fwC+HKkIjQY9Ojs7CtokVWw6rRadHe3oeW9v+vRtJBLNquunUinR1urCO7uyP+eLobq6Cv7AqZOsU6VMrK6qwtFjc5v+eZzTYcceqaegOtLzQaVSYenSTuzZ05M+5R6JRjE0YePdOJkgwOm0Z6SOzkUuF9He1oLe9/enA+uJRDJn6kylQgGHw5ZVn3kyjQ318Ix6cv7NExHRmaWxoR7JRALH+1OHMhLJJHx+P3w56peKMhEOuy1vzXiH3YZEPJEOVMXi8UlrC6uUSjgL3IDU4nKg571ehMNhBEOhrGwsQCrQ6HI6pixpUFFhgtNlx4H9h9InWlOb4sJZbRUKBVpanBm1g+eLTCZDa6sLe3v3pWu/JhIJeLzejECvAAEOuy1jw2Qxmc3mjACw0WiYdKOcxWzOCABXVlQUPf3zuDprLbxeX0Y2wVISBAGtLU68//7+9GuUSCTg9flyphuvrq6CzTb1plGbbTHi++MZfUiSlHViXxAEWK21U84VJ1pozyFRqTEFNNEMtLa04KUXn8OmTXfmPeHncjnx8MMP4te/+gW02tx1DwDA4bDjuef+gnvu+ToaG7NPk4yrr6/HQw9txtatTxa8AHfpJevx9J//iAsuOD/rPp1Oh898+jY885en4ZrklMg4g8GA3/32V/je974Lp9ORs83y5cuw5anH8egPH8mo7THfvnTXJvzv73+LlSu7s+5Tq1TYtOlO/PIXW+Z0wnt6vd9c9X/z3S+Xy+ek/u84u92Gl19+Ad/85jdw0UUXwmZrLsmi7kTXXHMVXtn+Ij7+8auhznECxGQy4dO3fQqvbH8Jq1etKqjPdevWYvvLL+Bzn7s95wYHpVKJa665Ci+/9Dyuv+7aaY13IT6HREQ0M6IoYsmSTrS0OPMuACoVCjQ11qN7xbK8bYDUwlZXZzva2lomDcKKogyNY/0VuptdrVZj+bIlsFoXpVM4jxMEwGKuxIrlywrezW63N2PZ0s6MNMuZv08Fu70Zy5cvndfUz6errKxA94plqKqyZD1uIFX7bvmyJXM6r6s6LeBbnSf9c7r9hPsFQZjTALBGo8bK7uWw2xbDXFkBjUaNHE/TvNJptVjZvQKNDfUZaSnHyQQBFkslVnQvy0gtOBmTyYSV3cvR0FCXkbI53adMQHW1Bd3dy6edgUUQBCxZ0omO9lZUWczQ6bSc1xERncGamhrR3t4KY56DDjJBBovFjK6ujrypf4FTAUunwz5pEFYmk6HOWoslSzpzlgnJRaVSoauzHTU11em01RNVVJjQ1dlRcJpmi9mMpUs7YTGbIcsxERBFEYtqarB0See0NkkVm0qlQmdnO6y1tTmDqDqdFu3trZO+LrNlNBqgmjD/nup3mUzGjFq4ZsvcjU0QBLS3tcDldKCysgIajSbn6zmfRFFEW1sLbM2Ls2rsjtPptGhxOeGw23LO10+nVCrR0dEGu60573chvV6Hjo42NE0oX1OIhfgcEpWSMDpyInf1biqKoYGjeQukl6tkOIjQG9umbCdWNULVtrbgfgVBhqpF+QOkpRKLxbDjzbfQ19eHYCAIi8UMp8uZUSe0UMlkEj0972H3nj0YGR5BIpFAU1Mjmpub0dLSMmUamUce+SHu+ea/AQAuvPAf8Pv/+U36vmPHjuG9vb0YHBiE1WrFOeesnnIX4WT27HkXBw8egsfjgcViRltbW860OaW2b99+9PS8B7/fD4fTgY72NhiNuRc6i+3w4SPpv3+brXnK9uMnVUVRRFPTwnuvzxePxzOWRn0AolxEndWKVatX5QwMF2r89O+JEycQiURhsZixZEnXvL0XCnHCfWTKNqEdf0RSyj7tcjrtuk+g5Ku/C4DBaIFaW7ovt1R+vKNDCBfwN0iFUarm/+RBIQKBIEKhEKKxGOSiCJVaBYNeP62Fh3HhcBhebyqVXzweh0qlglqthlarmXKznNfnw86du9LXF5x/qk59NBpFIBCEJEmQK+Qw6A0FpRucbJx+fwDRaBSiKEKtVk95irgUomMptKPRKFQqFXQ6bcEB9NmSJAnj3+o0eRa/JhqvgyZAKCjFd7lKJpPwen0Ih8NIJBJQqpQw6PUFL5Dn69Pv9yMSiSKZTEKhkEOn0+cMDJdKJCwBOLvWAeaaSq2DsYJpuKl4pKAPPm92dgKaGblCCUFYeJtnIpFIulSATBCgUCpg0OtntNEnHI7AH/AjGo0hEY9DqVRCpVZBo9FAPsWJUL8/gD0TssSds+bUxvZYLIZgMAQpHIZcnkp9PJv5TSweR2Dsc1IQBCiVCuhn+Jjn0nh66kgkAlEuQqvR5A0wFlskGkVirMSIUqmY8rmJRCJIJFKf6yqVckbfC8pFMBiEJIURi8WgUCig0ahn/bqFQiGEwxHEE3HIRTk0GvW8zfELEYuGz7r4zlxbqHGecsQU0ESzJJfLcc6a1UXpK5WGMFU/ttgaGxsnPWE8XV1dnXlr2i4kLpezoBPOc6F5mrXybLbmuRjGGcdkMuGiiy4sap9KpTLniXAiIqLT6XRa6HT5s7dMh0qlQnV18YN/CoVirPZYceqPqVSqOalRW2wKhaJk9bqmu7BVSJD4bCAIQt5T5rPpc7LyNUREROOUSmXRAkkqlRIqVfHnIXK5HEajAUYU57NNLoowmeamRm0xyWSyos8RCqVUKIBp7EVbSMHIUtNqtZNmupwJjUZTkrTkRGeDhbX1h4iIiIiIiIiIiIiIiIiIZowBYCIiIiIiIiIiIiIiIiKiMsEAMBERERERERERERERERFRmWAAmIiIiIiIiIiIiIiIiIioTDAATERERERERERERERERERUJuSlHgARFU9rWytuuulGAIDL5SzxaIiIiIhophQKBWoX1ZR6GEREREQ0S3K5HNVVVaUeBhERnWUYACYqI5desh6XXrK+1MMgIiIiolnSqNVobXWVehhERERENEtqtQoOh63UwyAiorMMU0ATEREREREREREREREREZUJBoCJiIiIiIiIiIiIiIiIiMoEA8BERERERERERERERERERGWCAWAiIiIiIiIiIiIiIiIiojLBADARERERERERERERERERUZlgAJiIiIiIiIiIiIiIiIiIqEwwAExEREREREREREREREREVCYYACYiIiIiIiIiIiIiIiIiKhMMABMRERERERERERERERERlQkGgImIiIiIiIiIiIiIiIiIygQDwEREREREREREREREREREZYIBYCIiIiIiIiIiIiIiIiKiMsEAMBERERERERERERERERFRmZCXegBEtLBIkoS///2N9PWaNWugUiln3C4cjmBwcCB9bbVaIZfzvx4qntdeex2RSAQA0NrWikU1NSUeERER0cLh8XiRTCYBAFqtBkpl9nyt0HaJRAKRSDR9rVIpIQjCHIyazlaBYBDRsfeYUqmAVqst8YiIiIgWDp/Ph8T4fE2jgUKhmFW7cDiS/lkuFyGKYpFHTGezSCSKkBQCAMgEGQwGfYlHRHT2YRSGiDL097tx1dXXpq/f69kFq9U643Y7duzAFR+7On298603YLM1F3PINAm3242//e11AKnJ/JVXfqzEIyq+2z/7eRw+fAQA8Nhj/4Ubrr+uxCMiIiJaOHp79yEkSQCA9rYW1NRUz7idz+fD2+/sSV+vXr0SGrV6DkZNuSSTSQwNnUxfV1ZWlN3Gyg+O9cE9MAgAqLPWwuVylHhEREREC8f+A4cQDocBAE6HHVVVllm12/n2O+mf7XYbaqqrijximozH40UsFgMAaHXasptXj3o8OHjwEABAo9Fg2dKuEo+I6OxTXt8WiYgow67de/Cp2z4DADCZTGUZACYiIiI6GyQSCfS815u+7u5eBoOeJymIiIiIzkQffNAHn98PAFjc1AiNtbbEIyKicsMawEREREREREREREREREREZYIBYCIiIiIiIiIiIiIiIiKiMsEU0EQ0pwRBgFKpLPUwiIiIiGjWBMhkQqkHQURERERFIAin5nWc4RERlR8GgIloTq1d+2EMDvSVehhERERENEsmkxHnnbu21MMgIiIioiJYs/pDpR4CERHNIaaAJiIiIiIiIiIiIiIiIiIqEwwAEy0QgUAAUjhc6mGcNSKRSKmHcEabi/cq3/9ERFQukskk4vF4qYdx1kgmk0gmk6UexhkrkUicEX0SERGVAud184/zupmbi3kx59pEZy6mgCYqoe3bX8FTT23Fc88/jxMnhgAANTXVWLduLf7xEzfgsssuLbivV1/9G57a8nO8+uqr6O93o3nxYnR0tuOfPvNprFu3FoFAAHd/7Rvp9nd/9SuwWq1Ff0yn6+vrw+YHH0pfP7j5AajV6qx2zzz7V2zb9kcAQHPzYnzprk2Ix+P45S9/jV/9+jfo3dsLj9eLxU1NOO+8c7Fp0xfQ0NAwrbG8+eZb+OnPHsdzz72A/v5+VFdXoaurCxs3bsD1110LAPjWv92H4eFhAMBNN23AOWtWz/ShZzh8+Aj++6c/w7PPPoejR4/CaDSiq7MDV199FTZu3ABBEPDAA5vR73YDAK6/7lqcf/550/49/3rPt+DxeNLXx/uOp38OhUK484t35fx3t95yM1au7M7brxQOY+vWn2Pbtj9h9+7dOHlyGGq1Gg6HHZesX49bb70Zzc2LpzVW98AAHn/8STz99P9h3779CAQCMJlM6OzswBUfvRy33noz9Hr9tPokIiIqlVBIwvH+fpw8OQxJkpBMAnK5CINej6oqC6zW2ow6a5ORJAnHj7sxPDICSZIgl8uh0+lQXWVBbe0iAMDhI0cRCac2tNXUVKOiwjRnj21cOBzGkSPH0tdOpx0yWfaeYkmScPToB+lrl8sBQRAwOupB3/F+BAIBhMNhKBQKmExG1FmtMJmM0xxLBH3Hj6ee75AEQSZAr9PBbK5EQ0M9ZDIZ3O4BeL0+AIDRaEg/d7M1X69Pv3sAvrHxA9mLoUePfgCFPPsrvclkxKJFNXn7TSQScA8MYmjoJPx+P6LRGESZDBqNGmazGVbropzz9cnMRZ9ERESlIkkSBgYGMTwyivDYZnVRFKHT6WAxV6KmprrgeV08HsfAwCBGRkYRkiQkk0notFoYjQZYrbUQRRFDQyfTcxadTjvp53gxHT58NL1pa9GiGuh02pztDh06kp6H1NYuglarSc2H+t3w+/2QQhJEuRxarQZVFguqq6umNY5EIoGBgUGcHB5BMBhEMpGERquGQW9AfX0dlEoFfD5/eu1ULpejqWl6a4L5zNfr4/X5MHTiZMZtEw9CDA+PIBSSsv6dQqlAY0P9pH2PjIxi6ORJ+Lw+RKJRCIIApVIJk8mI6ioLDAbDtMc7F30S0fz7fwAAAP//7N13eFvl2T/wr7ZkSR7y3jMhieMkEEgglF1oCVBKB3RRCrwte5ZfB7NAaWmBwAuFMlJGQsoKbRhllpewwgpkO95xvOQpW8va0u8PJ8fnWMNKLFu28/1cF9d1ztGj5zw6R0HH5z73/TAATJQEHo8X1//6Bqxb91zYa729ffj3v1/Bv//9ClauPB2PP/ZIzCCY3+/Hb37zezz51NOS7Q2NjWhobMSGDa/i2muvxlVXXoE1a54VXr/8skumJAA8ODgk2e8f77w94s2f3bW7hXYrVhyDX/7PxfjxT87Hxx9/ImlX39CA+oYG/HvDBtx115340XnnjjuGUCiE2/5wB/72t0ck2Qh9ff14//2NeP/9jXj11dfwj9WP4/XX/4OmpuaRcRxzdEICwE899QxuvuU2OJ1OYZvT6YTZbMa7/30P61/+F57751q89fY72LZtOwBg8eJFBxUAfu2119Haujfia16vV3IuxE468cSoAeDPv/gSV155NRobmyTb3W43du2qxa5dtXj8idX47W9uwNVXXxnXONeseRa33nY7hoaGJNutVis2bfoUmzZ9ikcfewL3338vvnnKyXH1SURElCydnV3Y07oXgYA069HvD2BwyIrBISu6zN1YMP8wpKREvrG2n9ncjeaWPZK+AgEvPB4vLJZB9Pb1Y2H1fFgGLLA7Rq4tDEbDlASAfX4/zN09wnpFRTkixH/h9fkk7aqqKtCypxUdHV2Sdh6PF729/ejrG0BxUSFKS4sjBpTH6u3tQ2NTM/x+UTZOIASrzQ6rzY7evn7ULFwAm80uGUciAsBTeX5sVhu6e3qjvt7fPxBxu1wuj3pj0mazo76hEcPDLsn2QDAIh3MYDucwOru6UFpaMu7Nxsnsk4iIKFm6u3vQ1t4RVs0iEAjAZrPBZhv5fZ47pxI6nS5mX3a7A01NzfCMqUJns9ths9vR1z+A+fPmwuF0orevDwCQGTRNWQC4f2AAfr8fAJCRkR41ANzX3y8cj8zMDAwMuNDc3IKg6OG0oM8Hq9UHq9UGy+AgysvLoFapxh3D8PAwGhqb4Xa7x2x3YXjYhYGBAcyZUwWvzyscI61Wm5AA8FSeH7fbI/QRcSwOB+wOR9j2lBRd1Osnn8+HpqYWWG02yfZQKASPx4Pe3j709vYhOysT5eVlcV1nT0afRJQ8/BdKNMX8fj/OP/+CsOCvVquFWq2WbHvjjTfxs/N/EbOE2hVXXB0W/AUg+QF+4IEH8cyaNRMb+BQKhUK45NIrJMHfsRcUAwMWXHrpFXjn3f+O299vf3sjHnzwb2HHUXy8X331dfz+9zePfeuEPf30Glx3/Q2S4C8g/TwbN36Aa6/9dcL3nQgff/wJfvCD88KCv2O/q06nE7fedjtuufUP4/b50EMP4+prrgsL/o7ts729HT/5yfl4/fX/HNzgiYiIpkBbWzuamqUBQZkMUCoUknZO5zC2bd8VcxoKs7kbDY3NYYFkcYLJ4OAQGhqaMJN0dHRJgr9jE2ZCoRDa2juwd2/buH319vWjrr5BGvwFIJePdup0DmNXbV3CyxDP9PMzNGTFjp27wgK14mMHAIFAEC0trWhpaU1Kn0RERMnS2dmF1r1tYdcQCrn0us7lcqF2dz18Pl/UvpxOJ+rqG8KCi2Iejwf19Y0IBmbO1Al2hxNNY4K/Yw0ODqExjushl8uN2t31YcFfcXa1PxBAY2MT3O7EThs208+P1+dDbW1dWKA2UmZ6X/8A6uoaxr02now+iSi5mAFMNMXuW/WAJGh59PJluPHG32HZsqMgk8lRW1uL+1Y9IAS9Nm78AE89/QwuvujCsL5eePElvPDiS8J6ZqYJt9x8E449dgUKCwuwefNXWLt2HV5a/zL++tf7Jv/DJcj27TvgdDpRVVWJ2269GUceuRQmUyYaGhrwzDNrsfofTwptb731dpx04glQRXmq8M0338LjT6wW1nU6HW65+UZ889RTUFFejp07d+Gl9S/j4Yf/jtX/eDKhpemam1tw8y23CetyuRzXX3cNTj/926heWI263XV46623ce999+OFF19KyL4f/N/7JSVktmzZij//+S8AAL1ej6eeWh3xfYtqFoZtGxiw4JJLr4DdbhfGf921V+OMM1Zi0aIadHZ2YdOmTbjjzj/BbDYDGAnuLjvqSJx11pkR97Np06e4/Y4/Cusmkwm33HwjjjvuGygvL0Nt7W68+9//4u6774HX64XX68XV11yPmpoalJaWHMwhISIimjRDQ1a0ioKWGrUalZXlSE9Pg0qlgsvlgrm7B52dXQgGQ/B6vWhu2YP58w4L68vlckmCYzIZUFJchMxME/R6PZzDw7AMWLC3rQM9vX1QzKCn7dva26FUKlBWWoIMUwZ0Wi3cbg8GLBa0ijKnOzrNyMvLjZpN4/F40NTUDPH9xsKCfOTkZMNoNMDt9mBwcBB79uyF3e7A8PBwwj5DMs5PYWGBpIRiMBjErto6Yb2qsjzisdJoNGHbfD6fJHAukwHFxUXIysyEwaCHx+OB1WrDnta98OwrXd3e0YnUVCOysjIjjm8y+iQiIkoWq82G9o5OYV2tUqG0tARpaalQKpVwu93o7e2DubsHoVAIPp8PrXvbMKeqMqyvUCiE5pZWydzBmSYTcnKyYTDo4fP5YLPZ0d7eAZfbLfxOzgRdXWaEQiHk5eUiOysLOp0W/kAADrsDe9vahZLZdocDff39yM6KXg66uWWPkIEMAGmpqSgoyIPBYEAwGILdbkdbewfcbjfM5u6EfYZknJ/0tFTMO2yuZNvetna4XCMP0eXkZMOUkRH2vmgZti0te+ASBc5Npgzk5uTAYNAjFArBbnegq8ssZBXb9h3Lshj31iajTyJKLgaAiaZQb28fHnjgQWH95JNPwrNrn5aUAjz88CV4du3TuPGmW/DII48CAO6++684/2c/lWRIhkIh3H//aF8FBQV4ef3zmD9/vrDt+OOPw3HHfQN5+Xl46KGHJ/OjJZTT6UR19QK8/dZ/JOWva2oW4t57/4KCwnzcccddAIC6ujpseOVV/PAH34/Y11/vGQ18p6en4/nnnsXRRy8Xti1ZshhLlizG3DlzcM2114c9dTgRf3v4ETj2XRQplUo88fijOOecs8P2XV29ABdd/KuE7DtW2WilUonTTv1m3H3974MPobNz5I8flUqFJx5/FN/97neE10tLS1BaWoIVK1bg3HN/jPqGBgAj8yivXHk6FGMynwDgttvuEC7ui4uL8eIL6yTf2ZqahaipWYjDlyzB+T+/EA6HAxaLBX/56z145OGH4h47ERHRVNizp1UIRmq1GiyqqZYE5HQ6HSrKy5BqNKJ2dx1CIaC3tx9FhYUwGqVTfHR0dMEf2B9Ik2H+vLmS4J/RYIDRYIBer8fu3fUIzKSn7UPAksMXQS+65tXptCgqLECq0YAtW3cAGAlwdnR0Yc6c8BupANDR2QWfb/QmYVVVBQoLRqc00em00OnyYTAasHNnraTtRCXj/BgMegB6YV18kxIAUtNSYYwxVYxYe0encPNSLpNh3pjxa7VaaLVapKWlYsfOWiGjt2VPKzIzTREzPyajTyIiomRpb+sQljUaDebPmyt5UH+k7HAxDAYDGvZVSRsYsCA/L2/fb/aogQGL5EG0vLxcSZBMoVBAq9XCaDSgri52Fup0EwwGUVFehpycbGGbWi6HyZSB1FQjtu8YrXjT1dUdNQBssQwK98wAICsrE5UV5cL1gUIxEoA0Gg2oq28Mq6w3Eck4P2q1OqzyXWfnaIUcnVYb95Qhg4NDGBqyCuv5eblhSRMZGelIS0tFU1MLLIODAICe7l7k5eZETECZjD6JKPlmzmPjRLPA2mfXCU92yeVy/PnPf4w6D9wfbrsFl17yS1x04S9w1plnor29Q/L6p59+hrq60QyAa6+9ShJI208mk+HWW25CWVlpAj/J5Lv5pt9Hnfv48ssvQ0lJsbBet7suYrsvN2/Gli1bhfXLLrtEEvwVu+CC83HKKSdNYMRSHo8XL730srB+1llnSIK/YmeddSa+d853E7bvRHC73ZL5gr93znclwV+x0tIS3HrrTcJ6c3ML3nzzrbB2n332Ob7cvFlYv+HX10X8zgLASSediJ///GfC+vr1/0Jvb/S5UoiIiKaa1WqDzT5606qkpDhq5mpWViYqystQkJ+Hgvy8sHKBwWBQ8juXlZUpCaSN7Svaa9NVQUGeJPgrlpqaKvk8zihZu6FQCD3do/PhZmSkS4K/kj6NRhQVJm6u2Zl+foLBILrNo3MhZ2dnRR2jVqtFefno3w0ulxsDA5Yp6ZOIiChZ7HY7HKIAY2FBftSAlsmUgdKSYuTmZCM3Jxs+f3gZ6L7+fmFZrVajpLg4rA0w8rBgYWHBBEc/tQx6vST4K6ZUKlFQkCesu1yuqCWC+/pGj5FSqURZWWnEh8NUKhXKSiMfv4M1089PT8/oNbFGo5HcIxWTy+UoKy8VsohDCEneO9l9ElHyMQBMNIU2bvxAWD7zzJU4bO7cqG3VajXuvvtPWLXqHqxadQ8qKyskr3/2+efCsslkws9++pOofalUKvzPxRdNYORTS6VS4dQYmapajQYrjjlGWG9uaYnYbtMnnwrLRqMRv/rlxTH3e/VVVx7gSKPbsmWL5EnGS371y5jtL7kk9utT7YsvvpTM0XvFFZfFbL9y5emSYO7GjR+GtRF///Py8vCjH50Xs88rLr8USuVIoQqv14uPPv44rrETERFNhUHR76RGo0ZulBth+xUVFWLOnErMmVMJk0la3s1udwjZpQCiBjaF16fhjahYTCZTzNczMtKFZdeYuWT3s9sd8IlKBBYXxQ7wFhTkQakMr0ZyMGb6+bHZ7JJjVzTOscvKzIRePxqwF3/XJ7NPIiKiZLFaR+c8VatUyIpRthgA8vPzUF5ehvLyMmSkp0teC4VCcNhHg8m5uTmQy6NXvcjKyow6rdl0lJ6RHvv1NGkWa6Rqd6FQCLZ9040BQG5ONpQRqsjtZzQakZpqPMCRRjbTz08wGITNNnrs8vNyY1ZVUatUyBZNvTFktYW1mYw+iWh6YACYaApt3vyVsLz0iCMm1Ffd7nphecGC+VEzifc78silE9rfVKooLxcCf9GIy5C0tu6N2Ka2drewvGD+PGREmEtDbNmyow5glLHtFmUly+VyHH744THbL1myGNoI87Ulizhz2mAwoCbCHMFiMpkMRx45+p3esnVrWJutW7cJy0uWLIZGow5rI1ZYWCg5z+IxERERJZv4QS+DQR91fq54iEvQyWQIKw89ltFomND+pppOF7sknE47eg3k9fkkc8HtNzYzeLybgEqlEnq9PmabeM3082MXZaorFYqwMpWRpBpHj69D9P7J7JOIiChZnM7R33q9Xh8zIDget9uNQHD0wTHDONcjcrk8aqWU6Wi8e1dqtQYyjB4/t9sT1sbt8UimtjAaxw/uRqsSeKBm+vkZHh5GMDSaVR3PcRG3cblcYdOKTEafRDQ9TJ+/SolmObvdLpR/BoDS0omVZB7cN9cCABQVFY3bPlrpjunIlBk7SwQAMkSZJGPLKO4nPkZlZWXj9qnT6RJ2nAaHxOencNxgp1wun/B3IpH6BwaE5WhleMYqKRkN1vb1hZdrFvdZGudxFvfZ3z8QoyUREdHUEl9/THTOK3EmpUajiSt4qNVOnwfHxjNe1oRSKX09GAyFtfGLjrdGo4YiRpbIfomai2ymnx/Jd3WcYLzQbkxQfir6JCIiShaf5DpjYr/hfr80EDbe/SAAUMfRZrpQqmInbMjlMihEVVhCoUjXddKH/eI55olKmpjp58cXduzGH9vY4zv2Pupk9ElE0wMDwERTxOPxStZT9BN7ekx80ySeJ9ES9aTcVIgn2BhPG4939JjHmwESz1OH8fB6R89PSkp8+zaMk00ylXziYxfnk44ponkPPRGe8PR4Rrfp4u1T1E48JiIiomQTBykVE8z2DInmRosnsAkgZpm8GSeOJBvx/HHxfvZEHaOZfn7EGR3xflfFQe5Ic/dNRp9ERETJEhQFKSdaxUP8GznS3/jXBPFeX0wHB58bPWrsMVIoxj/miTpGM/38hB+7eMYvPb5jH7acjD6JaHpgAJhoimRkpEvKGre1tU2ov7S0VGG5s6tr3Pbt7R0T2t9MlJ4+Ou9IPMc7FApFLSd9wPsWzXnS0RHfsZ/odyKRxBnWbXF+d9pFnzNTNBeIsC1zdFtX5/jfWQBob28XlsebP5CIiGgqibNa3Z7wB58OhPgaMdJDVJFMdJ8zjfgYRSolGEmkOecmuu+ZeH5UygP/roofXo2UwT0ZfRIRESWLSvxb753gdZ1CmiHrjeNhdq/n0Hrgfey0b544riXiaRPXvmf4+VEd1LGTjl81Jot7MvokoumBAWCiKaJQKFBVVSWsNzU1T6i/goICYbl1T+u47VtaWia0v5mosLBQWG5qHv94t7W1w+l0JmTf4vPjcDhgNptjtrdYLOjr60/IvqM5kPk4KirKhWWz2YyhoaFx39PU2CQsV1ZWhvdZPtpnY1NT2Otjeb1e7BF9t8VjIiIiSjbxvLbDw64YLccnLqHmDwTCbqiM5fP5JdVGDgXiYxQIBuFyjR/cHXZN7LxE2ve0Oj8RSipGIv6uejzeiHMsjzXsGp0LUSeq8jKZfRIRESWLeNoIdxzXGLGo1dLyufE8kJaoh9ZmCs2YY+SK4wE7V4KO0XQ9P/Hmz46d4iSe4yJuo1Qqwx7Em4w+iWh6YACYaAodf9w3hOWXX/4XHA5HzPabN3+FTz7ZhE8+2QSLxSJ57cgjlwrLdfX1+OzzL2L29fwLLx3EiGe25cuWCcutrXvx9jvvxmz/zDNrE7bvZcuOlKw/9/wLMds/91zs1w+WTnQR53A4MDw8HKP1qG8cu0KyvmbNszHbNzY2YeMHHwrrx644JqzNMSuOFpa3bNmKLzdvjtnniy+uh91uH+1zzJiIiIiSSVztw+FwwmazxWw/7HLBarXCarWG3VRJTZVOQdHT2xuzr56engMc7cwnrn4DAObu7pjtLYODcQWJ4zFdzo9cLodcNA3K2PnaokkTfVcBwNwde3zDLhcGB63CevqYYz9ZfRIRESWL+LfeOTwMuz32/TqX2w2bzQ6bzR5WmUSlUkoedOrvH4jZl9PphDPOezWzhVKplEz51dvbF7O93++HxTKYkH1Pp/MjLjcez8N0wEgAWzz+vt7YySShUEiScDL2unay+iSi6YEBYKIpdN55PxSW+/r68fdHH4/adtOmT3Hat1bijDPPxhlnng2bzS55/eSTTpTMa/vAAw9GnUtry5atePPNtyY4+pnnpJNOkNycuveeVVEzNsxmM/7x5FMJ23deXh6WLztKWF+9+ilYrdaIbW02Gx5/YnXC9i02Nmv2w48+jut9+fn5+NZppwrrjz72RNSL4lAohHvuuU+4WNXpdPje984Ja3fGytORnZ0lrN97z6qoWck2mw0PPfSwsL506RFYtKgmrrETERFNhcxMkySDYG9bO0JRMjJ9Ph+2b9+JrdtG/rNZpcFitVqNNNGNk64uc9SbQH5/AJ1dsSuLzEYqlQoZouk9zObuqKWgQ6EQ2toSN/3JdDk/MpkMWlHm7VCUa8uxNBo1Mk0ZwnpnZxd8vugZym17R7/LCoUc2dnZU9InERFRsmRkpEsyGDs7u2Jc1/mxe3c9anfXoXZ3neTBdaG/9HRhechqhT1GAkhn56F3XQcApozR6wiHwxEzwNvZZT6gqnbjmS7nR6MdrTIz9r5vLNmiadcGh4Zgi/Ad3K+3t0+SwZydlRWx3WT0SUTJxwAw0RRauvQInH76t4X1u+76Mx544MGwdu+99z4uuvhXQkD3vHN/iLKyUkkbk8mE884dDSi/9dbbuPTSK8ICnJ999jnOPe/HUYPDs1lqaiouuOB8Yf3LzZvxw3N/FJZNXVdXhzPOPDtqgPZg/c8vLxaWu7q6cNZ3zkHXmPmau7u7cfZ3v4+9eydn/t+CggJJEPx3v7sRr7zyGrp7esb9Tlx33TXCvCxdXV0444zvoLFRWrrZ7Xbjkksux4svrRe2XXjhBcjJCb+pl5KSgssvv1RYf/udd/Gz838Rlgnf0dGBs75zDuobGoRt1193TRyfloiIaOrI5XIUF41O+WCxDGF3XX3Y7+uwy4Vdu3YL12gpKTrJA1H7FRTkC8sejxfbtu8Mm3/L6/Vi+46dcc+BO9sUio633x/Atu074HBIp+/w+wPYubMWVmvsjOwDNV3OT0rKaHZGV5cZHR2dcLs9UW9S71dcXATZvuxhj8eLrdt2hJXIDgaDqKtrQI8oCyc/Pw9qdeSSfpPRJxERUTLI5XLk5+cJ60NWKxqbmsOu61xuNxoaGoV5Y7VaLTIzTWH95eZmS6p21Nc3hgX4QqEQmptbYBlMTGbrTJObmw2FQiGsNzW1REw8aGvrgNkcu/LLwex7OpyfsVX7Wva0wuVyjXu/LicnG2rRAwv19Y0YHAyfus1s7sae1r3CukGvR0ZGeli7yeqTiJKPs3MTTbH7778XW7duE+aE/cPtd+Kpp5/BihUroFQqUFu7G1999bXQPicnG3/84x0R+7r55t/j7XfeRWdnJwDgxZfW473/+z8sX74cBfn5+Orrr7Ft23YEg0Ece+wKfPLJpsn/gNPMb39zA95+6x0hmPjhhx9h0eKlOOqoIzGnqgrbd+zA119vgdfrRUlJMbxeH7rHKSkYrx98/3t46cX1eOfd/wIAtm/fgSOWLsdRRx2JBfPnoa6+AV988SVcLhcKCwuh02knPDf0WDKZDNdccyXuuOMuACOlsC/4xUVh7Z56cjXOOedsybajj16Oa6+5Cvfedz8AoL6hAcuPPhY1NQuxaFEN2ts7sHnzV5IAbk3NQtxy841Rx3P1VVfi/fc/wIcffgQAePPNtzBn7gIsXXoEKisrsHPnLmzfvkOSQfLzn/8MZ5yx8uAPAhER0SQpKiqEZXBIuDnS1zeAoaEvkZaWBo1ajeHhYdhsdgREN3Gqqiok5d72y8nJRm9vHwb2ZT84HE58+eXXMKYaodenYNg5DJvdjkAgCI1GDYVckbA5bmeKTJMJuTnZQjDR7fbg6y3bYDTqYTQY4Xa7YbXZ4PcHIJPJYDDoxy3hGK/pcn6KCgsxMGBBKAQEAkE0t7SiuaVV0qawIB9VVRWSbWlpqSgpLsTefZnRw8MubN78NQx6PQwGA9weD+w2O/yi7BqDQY/yMQ+hTnafREREyVKQn7dvuo6Rh8gslkF8bduGVKMRarUKLpcbdrsDwdDodV15WWnE6zqNRoPCokK0t4/8Rvr9ftTuroM+JQUGgx4+nx92ux2+fRVFjEZjxEzi2UylUqGkpBh79rQCAIKhIJqaW9DZ2QWD0YBQMASbzQbvvvtDBr0eDqczRo/xmy7nJzs7C2Zzt/AZe3v7wsphp6TosKhmoWSbUqlERUU56usbEUIIgUAA9Q2N0Gg0MBoNCAaDsNsdkntrCoUClZXSKoGT3ScRJR8zgImmWF5uLjZsWC/J6N27tw3PPfc81q5dJwn+ZmVlYs2apyNmiQAjWcD/XLcGebm5wraBAQveeONNrP7Hk9iyZSuCwSAqKsrxl7v/NHkfahrT6/VYt26NpBSyw+HA++9vxONPrMZnn30Or9eL1NRUrF79GAwGfYzeDoxMJsNjjz0iKQXtdrvx0Ucf47HHV+ODDz6Ey+WCVqvF3x95SFLSO5GuvOJynHLKSQf13ptu+j2uuuoKYT0YDGLbtu1Yu3YdNm78QBL8Xbr0CLy8/kXJvCFjKRQKrHv2GZx44gnCNpfLhY8//gTPPLMWX331teRi8qc//TFW3XfPQY2diIhoKlQvmCd56t3n86O/fwCdXWYMDlmF4K9MJsOcqgpJybmx5s2bKyk1HAgGMTRkRWfnvr4CQSjkcsw7bC4UikPzT7k5cyphMo0ew1AoBJvNgc4uMwYsg/D7R4KNVZXlMCT42mo6nJ+RoGsxREkrcSsrK0VxUaGwHgoBdocT5u4eDA4OSQK1qUYDahZWR7ypPdl9EhERJcvcOVVIE81T7/f7YRkcRHdPL6w2mxD8lUGG8rJSSduxCgvykTumOppzeBg9vX2wDA4KwcXioiLo9SmRupj1cnOyUSiqsgKMZFn39fWjf2BACIxmZWYiJzcnofueDudHqVSivLxMkgkdr/T0NFTNqYBcNnpd5fF40N8/AItlUHJvTaVSYd68uTHv101Wn0SUXPzLiygJDps7Fx9sfA+XX34p0iPcBNTr9fjxj3+Ejz58H0cvXxazr8WLF+G9997Geef+UDIP3X7nnHM2Xn3lX5KydYeaqqpKvP3WG7jggvOh1WjCXj/++OPw5huvYdlRR0nmFJEl4OZURkYGNmx4Gb/5f7+OeK6POOJwbPj3ehx//HET3lc0arUaL69/EU/+4wmsXHk65s+fH/E4RCKTyXDnHX/AKxtextFHL4/Ypri4GHfcfhvefOO1iKWfxzIajXh5/QtYteoeVFVVRmyzZMliPLv2aTz8tweFMtRERETTkUKhQM3CBZhTVSEp47afTDYyr9ySJTXjXo8plUosWrQQpSXFUEX4/TMaDaipqUa6aC7cQ41CocDC6gWoKC+DShV+jHQ6Laqr56GgIB8hiMoiH0TAdKzpcn7Kykpw+JLFyM3JhtFogFIZ/03DiooyLF5UHfWGtVarQUVFGZYsWRR3mebJ6JOIiCgZFAoF5h02F+VlpdBEuW+SlpqK6ur5yI0jIFleXobKyvKI92DUKhUqKspRWHjo3q8DRqaUmDunKuJ1tEKhQElxESoryyWXcgm4rAMwPc5PRkY6Fi+qQV5uLoxGo2Qu6vFkmkxYtKgamSaTpKT1fgqFArk5OVhUUw2jwZC0PokoeWRDg32xJwuiCenvaRt3PqbZJuQZhuvL18Ztp8gqhmbeirj7lcnkyMotnsjQpiW3x4MvPv8CnZ2dkCsUyM/Lw9KlRxxUNqjFYsEXX25Gf18/8vPzMX/+YSgoKBj/jYeQoaEhfPzxJ+gym5GdlY3qhQswd84cACPZrQUFJXDvm8/tjf+8ihUrjknYvj0eLz7//HN0dnbCYDDgsHmHoaqyckZlQXR0dGDnzl3o7x+AwWBAaWkJlixZLMz/djB27tyFlpY9sFqtyMw0Yd68eZKM7UNFX/fecdu4Nr+OkHv8kkcpx56Lg0oNmmWMqZnQpvAPEkoc21A/PHH8G6T4qDWz82lxu90Bl9uNYCAAtVoNg0Ef8SG98QSDQdhsdng8HigUCqSkpEjmf6WR7N+hISvcbjdkMhn0ej0MBr1wXbJjxy5Y9pXnLi8rQUlJ4v6WmA3nx+PxwOFwwufzQaFQQKvVwmic2O/mZPQ5E3k9bgCH1n2AyabR6pGaHrkyFtHBcA/bYbdZkj2MWUOpUkMmmzn3NuLlcDjh8XgQCAahVqmQkpJy0A8zOZ1OuNxuIATodDrodNoZdT9oKjgcTmEOXJ1OB70+RciO7ew0o71jpGRzWloq5s87LKH7nunnxx8IwOlwwOv1QSaTQa1WwWAwTOgzTEafM5Hf5znk4juTbbbGeaYjplURJZlWo0lY9qfJZMK3v3VaQvqardLT03HmmWdEfK2rq0sI/gJARWVFxHYHS6NRT2qm71QoKipCUVFRQvtcuLAaCxdWJ7RPIiKiZDEaDQkJeMnl8kM60zceMplMUn57LPF1nTbB5elmw/nRaDRRs5umU59ERETJYjDoEzZVmF6vn7Spv2aLWMfb4xVd10XIFp6omX5+lAoF0tISe206GX0S0dQ6tB7XICKKYcOGV4Xl1NRUydzKRERERDRz2O0ODA+7hPVIZQWJiIiIaPoLBoMY2lfVBUDc05oRER3qmAFMRLPWmjXPYtX9DwAA1Co1nnzyiaiZpt3d3Xjwob8J6yeffOLkD5CIiIiI4uJ0DmPXrt3CeklJEfLyIj+sFwqFsKd1dGoFjUadsOwdIiIiIpqYUCiEnTtr4Q8EAADp6WkoLyuN2r6zswten09YT01LnfQxEhHNBswAJqJZ67RvnQqn04nW1r1oaGzEmWd9F/etegBtbe0IBoMAgO6eHjz/wos44YRT0NvbB2CkpN9ll12azKETERERkYhenwKNRg2X2w2X242GxiY0NDbB4XAK13V+fwBDQ1Zs2bodg6IskcLCAmFeYCIiIiJKLplMhvT0NHg8Hng8HvT09GL37npYrTYE9gWFg8EgnMPDaGxsRmeXWXhvRno69CkpyRo6EdGMwgxgIpq18nJz8dijj+Dc834Cv9+PoaEh3HnnXbjzzrug1WqRkpICi8US9r4bfn0dli87KgkjJiIiIqJo5s07DFu2boPH40UoBJjNPTCbeyCTyaBSKeH1+sLek5GRjqLCgiSMloiIiIiiKSoqhMPhhNVmAwBYbTZhWaVUwu8PIISQ5D1qlQrl5dEzhYmISIoZwEQ0q5188klYt24N8vPzJdvdbndY8Fer1eK2227GjTf+biqHSERERERx0GjUWLRoIVJTDZLtoVAoYvA3JycbC6vnM/uXiIiIaJqRyWSYO7cKWVmZYa/5/P6w4K9er0d19Xyo1eqpGiIR0YzHDGAimvW+ddqp+Pqrz/HP557Hu+++hy1fb0Fffz+CwSAMBgPmzp2DE084Ab/4xc9RUlKc7OESERERURQpOh0OX7IY/QMD6O8fgM1qh8frQTAYglwuh1arQXpaGnJzs5GayvnhiIiIiKYrhUKBqsoK5Ofloq9vADa7DW63B8FgEDKMVHgxGo0wmTKQmWlK9nCJiGYcBoCJ6JCg0+lw8UUX4uKLLgQABAIB+Hw+aLXaJI+MiIiIiA5UVmYmsjJHM0YCgQAUCkUSR0REREREB0Ov10Ov1wvrwWAQcjkLlxIRTRQDwER0SFIoFLxJSERERDRL8LqOiIiIaHZg8JeIKDH4f1MiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolmCAWAiIiIiIiIiIiIiIiIiolni/wMAAP//7NmBDAAAAMAgf+t7fKWRAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgQgADAAAAAAAATAhgAAAAAAAAgAkBDAAAAAAAADAhgAEAAAAAAAAmBDAAAAAAAADAhAAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGBCAAMAAAAAAABMCGAAAAAAAACACQEMAAAAAAAAMCGAAQAAAAAAACYEMAAAAAAAAMCEAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgIgAAAP//7NzBTcNAFEXRGckIpSPqSME0QRWAhMjOiYOHFlg4/OT5nArecqQ7+gIwAAAAAAAAQAgBGAAAAAAAACCEAAwAAAAAAAAQQgAGAAAAAAAACCEAAwAAAAAAAIQQgAEAAAAAAABCCMAAAAAAAAAAIQRgAAAAAAAAgBBT9QD4qzHW9v31Xj0DAIANLMu5egLAjYzqAQD/6ud6ba1XrwDY3hjedTwuAZiHslzm6gkAAGxgrGv1BAAANjDG6u8LANwZJ6ABAAAAAAAAQgjAAAAAAAAAACEEYAAAAAAAAIAQAjAAAAAAAABACAEYAAAAAAAAIIQADAAAAAAAABBCAAYAAAAAAAAIMVUPYL/W00eb316rZwA8jHGZqycAAAAAAHDnBGDKjOXcxumzegYAAAAAAADEcAIaAAAAAAAAIIQADAAAAAAAABBCAAYAAAAAAAAIIQADAAAAAAAAhBCAAQAAAAAAAEIIwAAAAAAAAAAhBGAAAAAAAACAEAIwAAAAAAAAQIipegB5+vOhHV6O1TMA9qv36gUAAAAAABQRgLmB3vr0VD0CAAAAAAAAdscJaAAAAAAAAIAQAjAAAAAAAABACAEYAAAAAAAAIIQADAAAAAAAABBCAAYAAAAAAAAIIQADAAAAAAAAhPgFAAD//+zcwW3DQBAEwRMpyvnH6Yf1lSjSzsIHNKsiGOy3gRWAAQAAAAAAACIEYAAAAAAAAIAIARgAAAAAAAAgQgAGAAAAAAAAiBCAAQAAAAAAACIEYAAAAAAAAIAIARgAAAAAAAAgQgAGAAAAAAAAiBCAAQAAAAAAACIEYAAAAAAAAICI2/Pn+3f2iLL9/RpjODEA/Lf1vo1lWWfPIOT47OM8j9kzAOBylmUd632bPYOQ8zzG8dlnzwCAC7qN7fE1e8QlCMAAAAAAAAAAEV5AAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAhAAMAAAAAAAAECEAAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAhAAMAAAAAAAAECEAAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAhAAMAAAAAAAAECEAAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAhAAMAAAAAAAAECEAAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAhAAMAAAAAAAAECEAAwAAAAAAAEQIwAAAAAAAAAARAjAAAAAAAABAxB8AAAD//+3ZgQwAAADAIH/re3ylkQAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGBCAAMAAAAAAABMCGAAAAAAAACACQEMAAAAAAAAMCGAAQAAAAAAACYEMAAAAAAAAMCEAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYEIAAwAAAAAAAEwIYAAAAAAAAIAJAQwAAAAAAAAwIYABAAAAAAAAJgQwAAAAAAAAwIQABgAAAAAAAJgQwAAAAAAAAAATAhgAAAAAAABgQgADAAAAAAAATAhgAAAAAAAAgAkBDAAAAAAAADAhgAEAAAAAAAAmBDAAAAAAAADAhAAGAAAAAAAAmBDAAAAAAAAAABMCGAAAAAAAAGBCAAMAAAAAAABMCGAAAAAAAACACQEMAAAAAAAAMCGAAQAAAAAAACYEMAAAAAAAAMCEAAYAAAAAAACYEMAAAAAAAAAAEwIYAAAAAAAAYCKZxhRBgRIUsgAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "The Claude API supports a parameter called `tool_choice` that allows you to specify how you want Claude to call tools. In this notebook, we'll take a look at how it works and when to use it.\n", "\n", "When working with the `tool_choice` parameter, we have three possible options: \n", "\n", "* `auto` allows Claude to decide whether to call any provided tools or not.\n", "* `any` tells Claude that it must use one of the provided tools, but doesn't force a particular tool.\n", "* `tool` allows us to force Claude to always use a particular tool.\n", "\n", "\n", "This diagram illustrates how each option works: \n", "\n", "![tool_choice.png](attachment:tool_choice.png)\n", "\n", "Let's take a look at each option in detail. We'll start by importing the Anthropic SDK:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "from anthropic import Anthropic\n", "client = Anthropic()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Auto\n", "\n", "Setting `tool_choice` to `auto` allows the model to automatically decide whether to use tools or not. This is the default behavior when working with tools if you don't use the `tool_choice` parameter at all.\n", "\n", "To demonstrate this, we're going to provide Claude with a fake web search tool. We will ask Claude questions, some of which would require calling the web search tool and others which Claude should be able to answer on its own.\n", "\n", "Let's start by defining a tool called `web_search`. Please note, to keep this demo simple, we're not actually searching the web here." ] }, { "cell_type": "code", "execution_count": 137, "metadata": {}, "outputs": [], "source": [ "def web_search(topic):\n", " print(f\"pretending to search the web for {topic}\")\n", "\n", "web_search_tool = {\n", " \"name\": \"web_search\",\n", " \"description\": \"A tool to retrieve up to date information on a given topic by searching the web\",\n", " \"input_schema\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"topic\": {\n", " \"type\": \"string\",\n", " \"description\": \"The topic to search the web for\"\n", " },\n", " },\n", " \"required\": [\"topic\"]\n", " }\n", "}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we write a function that accepts a `user_query` and passes it along to Claude, along with the `web_search_tool`. \n", "\n", "We also set `tool_choice` to `auto`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tool_choice={\"type\": \"auto\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's the complete function:" ] }, { "cell_type": "code", "execution_count": 145, "metadata": {}, "outputs": [], "source": [ "from datetime import date\n", "\n", "def chat_with_web_search(user_query):\n", " messages = [{\"role\": \"user\", \"content\": user_query}]\n", "\n", " system_prompt=f\"\"\"\n", " Answer as many questions as you can using your existing knowledge. \n", " Only search the web for queries that you can not confidently answer.\n", " Today's date is {date.today().strftime(\"%B %d %Y\")}\n", " If you think a user's question involves something in the future that hasn't happened yet, use the search tool.\n", " \"\"\"\n", "\n", " response = client.messages.create(\n", " system=system_prompt,\n", " model=\"claude-3-sonnet-20240229\",\n", " messages=messages,\n", " max_tokens=1000,\n", " tool_choice={\"type\": \"auto\"},\n", " tools=[web_search_tool]\n", " )\n", " last_content_block = response.content[-1]\n", " if last_content_block.type == \"text\":\n", " print(\"Claude did NOT call a tool\")\n", " print(f\"Assistant: {last_content_block.text}\")\n", " elif last_content_block.type == \"tool_use\":\n", " print(\"Claude wants to use a tool\")\n", " print(last_content_block)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's start with a question Claude should be able to answer without using the tool:" ] }, { "cell_type": "code", "execution_count": 139, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Claude did NOT call a tool\n", "Assistant: The sky appears blue during the day. This is because the Earth's atmosphere scatters more blue light from the sun than other colors, making the sky look blue.\n" ] } ], "source": [ "chat_with_web_search(\"What color is the sky?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we ask \"What color is the sky?\", Claude does not use the tool. Let's try asking something that Claude should use the web search tool to answer:" ] }, { "cell_type": "code", "execution_count": 140, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Claude wants to use a tool\n", "ToolUseBlock(id='toolu_staging_018nwaaRebX33pHqoZZXDaSw', input={'topic': '2024 Miami Grand Prix winner'}, name='web_search', type='tool_use')\n" ] } ], "source": [ "chat_with_web_search(\"Who won the 2024 Miami Grand Prix?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we ask \"Who won the 2024 Miami Grand Prix?\", Claude uses the web search tool! \n", "\n", "Let's try a few more examples:" ] }, { "cell_type": "code", "execution_count": 141, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Claude did NOT call a tool\n", "Assistant: The Los Angeles Rams won Super Bowl LVI in 2022, defeating the Cincinnati Bengals by a score of 23-20. The game was played on February 13, 2022 at SoFi Stadium in Inglewood, California.\n" ] } ], "source": [ "# Claude should NOT need to use the tool for this:\n", "chat_with_web_search(\"Who won the Superbowl in 2022?\")" ] }, { "cell_type": "code", "execution_count": 144, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Claude wants to use a tool\n", "ToolUseBlock(id='toolu_staging_016XPwcprHAgYJBtN7A3jLhb', input={'topic': '2024 Super Bowl winner'}, name='web_search', type='tool_use')\n" ] } ], "source": [ "# Claude SHOULD use the tool for this:\n", "chat_with_web_search(\"Who won the Superbowl in 2024?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Your prompt matters!\n", "\n", "When working with `tool_choice` set to `auto`, it's important that you spend time to write a detailed prompt. Often, Claude can be over-eager to call tools. Writing a detailed prompt helps Claude determine when to call a tool and when not to. In the above example, we included specific instructions in the system prompt:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "system_prompt=f\"\"\"\n", " Answer as many questions as you can using your existing knowledge. \n", " Only search the web for queries that you can not confidently answer.\n", " Today's date is {date.today().strftime(\"%B %d %Y\")}\n", " If you think a user's question involves something in the future that hasn't happened yet, use the search tool.\n", "\"\"\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Forcing a specific tool\n", "\n", "We can force Claude to use a particular tool using `tool_choice`. In the example below, we've defined two simple tools: \n", "* `print_sentiment_scores` - a tool that \"tricks\" Claude into generating well-structured JSON output containing sentiment analysis data. For more info on this approach, see [Extracting Structured JSON using Claude and Tool Use](https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb) in the Anthropic Cookbook.\n", "* `calculator` - a very simple calculator tool that takes two numbers and adds them together .\n" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [], "source": [ "\n", "tools = [\n", " {\n", " \"name\": \"print_sentiment_scores\",\n", " \"description\": \"Prints the sentiment scores of a given tweet or piece of text.\",\n", " \"input_schema\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"positive_score\": {\"type\": \"number\", \"description\": \"The positive sentiment score, ranging from 0.0 to 1.0.\"},\n", " \"negative_score\": {\"type\": \"number\", \"description\": \"The negative sentiment score, ranging from 0.0 to 1.0.\"},\n", " \"neutral_score\": {\"type\": \"number\", \"description\": \"The neutral sentiment score, ranging from 0.0 to 1.0.\"}\n", " },\n", " \"required\": [\"positive_score\", \"negative_score\", \"neutral_score\"]\n", " }\n", " },\n", " {\n", " \"name\": \"calculator\",\n", " \"description\": \"Adds two number\",\n", " \"input_schema\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"num1\": {\"type\": \"number\", \"description\": \"first number to add\"},\n", " \"num2\": {\"type\": \"number\", \"description\": \"second number to add\"},\n", " },\n", " \"required\": [\"num1\", \"num2\"]\n", " }\n", " }\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our goal is to write a function called `analyze_tweet_sentiment` that takes in a tweet and uses Claude to print a basic sentiment analysis of that tweet. Eventually we will \"force\" Claude to use the `print_sentiment_scores` tool, but we'll start by showing what happens when we **do not** force the tool use. \n", "\n", "In this first \"bad\" version of the `analyze_tweet_sentiment` function, we provide Claude with both tools. For the sake of comparison, we'll start by setting `tool_choice` to `auto`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tool_choice={\"type\": \"auto\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Please note that we are deliberately not providing Claude with a well-written prompt, to make it easier to see the impact of forcing the use of a particular tool." ] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [], "source": [ "def analyze_tweet_sentiment(query):\n", " response = client.messages.create(\n", " model=\"claude-3-sonnet-20240229\",\n", " max_tokens=4096,\n", " tools=tools,\n", " tool_choice={\"type\": \"auto\"},\n", " messages=[{\"role\": \"user\", \"content\": query}]\n", " )\n", " print(response)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see what happens when we call the function with the tweet `Holy cow, I just made the most incredible meal!`" ] }, { "cell_type": "code", "execution_count": 125, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ToolsBetaMessage(id='msg_staging_01ApgXx7W7qsDugdaRWh6p21', content=[TextBlock(text=\"That's great to hear! I don't actually have the capability to assess sentiment from text, but it sounds like you're really excited and proud of the incredible meal you made. Cooking something delicious that you're proud of can definitely give a sense of accomplishment and happiness. Well done on creating such an amazing dish!\", type='text')], model='claude-3-sonnet-20240229', role='assistant', stop_reason='end_turn', stop_sequence=None, type='message', usage=Usage(input_tokens=429, output_tokens=69))\n" ] } ], "source": [ "analyze_tweet_sentiment(\"Holy cow, I just made the most incredible meal!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude does not call our `print_sentiment_scores` tool and instead responds directly with:\n", "> \"That's great to hear! I don't actually have the capability to assess sentiment from text, but it sounds like you're really excited and proud of the incredible meal you made\n", "\n", "Next, let's imagine someone tweets this: `I love my cats! I had four and just adopted 2 more! Guess how many I have now?`" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ToolsBetaMessage(id='msg_staging_018gTrwrx6YwBR2jjhdPooVg', content=[TextBlock(text=\"That's wonderful that you love your cats and adopted two more! To figure out how many cats you have now, I can use the calculator tool:\", type='text'), ToolUseBlock(id='toolu_staging_01RFker5oMQoY6jErz5prmZg', input={'num1': 4, 'num2': 2}, name='calculator', type='tool_use')], model='claude-3-sonnet-20240229', role='assistant', stop_reason='tool_use', stop_sequence=None, type='message', usage=Usage(input_tokens=442, output_tokens=101))\n" ] } ], "source": [ "analyze_tweet_sentiment(\"I love my cats! I had four and just adopted 2 more! Guess how many I have now?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude wants to call the calculator tool:\n", "\n", "> ToolUseBlock(id='toolu_staging_01RFker5oMQoY6jErz5prmZg', input={'num1': 4, 'num2': 2}, name='calculator', type='tool_use')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clearly, this current implementation is not doing what we want (mostly because we set it up to fail). \n", "\n", "So let's force Claude to **always** use the `print_sentiment_scores` tool by updating `tool_choice`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tool_choice={\"type\": \"tool\", \"name\": \"print_sentiment_scores\"}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In addition to setting `type` to `tool`, we must provide a particular tool name." ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [], "source": [ "def analyze_tweet_sentiment(query):\n", " response = client.messages.create(\n", " model=\"claude-3-sonnet-20240229\",\n", " max_tokens=4096,\n", " tools=tools,\n", " tool_choice={\"type\": \"tool\", \"name\": \"print_sentiment_scores\"},\n", " messages=[{\"role\": \"user\", \"content\": query}]\n", " )\n", " print(response)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now if we try prompting Claude with the same prompts from earlier, it's always going to call the `print_sentiment_scores` tool:" ] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ToolsBetaMessage(id='msg_staging_018GtYk8Xvee3w8Eeh6pbgoq', content=[ToolUseBlock(id='toolu_staging_01FMRQ9pZniZqFUGQwTcFU4N', input={'positive_score': 0.9, 'negative_score': 0.0, 'neutral_score': 0.1}, name='print_sentiment_scores', type='tool_use')], model='claude-3-sonnet-20240229', role='assistant', stop_reason='tool_use', stop_sequence=None, type='message', usage=Usage(input_tokens=527, output_tokens=79))\n" ] } ], "source": [ "analyze_tweet_sentiment(\"Holy cow, I just made the most incredible meal!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude calls our `print_sentiment_scores` tool:\n", "\n", "> ToolUseBlock(id='toolu_staging_01FMRQ9pZniZqFUGQwTcFU4N', input={'positive_score': 0.9, 'negative_score': 0.0, 'neutral_score': 0.1}, name='print_sentiment_scores', type='tool_use')\n", "\n", "Even if we try to trip up Claude with a \"Math-y\" tweet, it still always calls the `print_sentiment_scores` tool:" ] }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ToolsBetaMessage(id='msg_staging_01RACamfrHdpvLxWaNwDfZEF', content=[ToolUseBlock(id='toolu_staging_01Wb6ZKSwKvqVSKLDAte9cKU', input={'positive_score': 0.8, 'negative_score': 0.0, 'neutral_score': 0.2}, name='print_sentiment_scores', type='tool_use')], model='claude-3-sonnet-20240229', role='assistant', stop_reason='tool_use', stop_sequence=None, type='message', usage=Usage(input_tokens=540, output_tokens=79))\n" ] } ], "source": [ "analyze_tweet_sentiment(\"I love my cats! I had four and just adopted 2 more! Guess how many I have now?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Even though we're forcing Claude to call our `print_sentiment_scores` tool, we should still employ some basic prompt engineering to give Claude better task context:" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [], "source": [ "def analyze_tweet_sentiment(query):\n", "\n", " prompt = f\"\"\"\n", " Analyze the sentiment in the following tweet: \n", " {query}\n", " \"\"\"\n", " \n", " response = client.messages.create(\n", " model=\"claude-3-sonnet-20240229\",\n", " max_tokens=4096,\n", " tools=tools,\n", " tool_choice={\"type\": \"auto\"},\n", " messages=[{\"role\": \"user\", \"content\": prompt}]\n", " )\n", " print(response)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Any\n", "\n", "The final option for `tool_choice` is `any`, which allows us to tell Claude, \"You must call a tool, but you can pick which one.\" Imagine we want to create a SMS chatbot using Claude. The only way for this chatbot to actually \"communicate\" with a user is via SMS text message. \n", "\n", "In the example below, we make a very simple text-messaging assistant that has access to two tools:\n", "* `send_text_to_user` - sends a text message to a user.\n", "* `get_customer_info` - looks up customer data based on a username.\n", "\n", "The idea is to create a chatbot that always calls one of these tools and never responds with a non-tool response. In all situations, Claude should either respond back by trying to send a text message or calling `get_customer_info` to get more customer information. To ensure this, we set `tool_choice` to `any`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tool_choice={\"type\": \"any\"}" ] }, { "cell_type": "code", "execution_count": 162, "metadata": {}, "outputs": [], "source": [ "def send_text_to_user(text):\n", " # Sends a text to the user\n", " # We'll just print out the text to keep things simple:\n", " print(f\"TEXT MESSAGE SENT: {text}\")\n", "\n", "def get_customer_info(username):\n", " return {\n", " \"username\": username,\n", " \"email\": f\"{username}@email.com\",\n", " \"purchases\": [\n", " {\"id\": 1, \"product\": \"computer mouse\"},\n", " {\"id\": 2, \"product\": \"screen protector\"},\n", " {\"id\": 3, \"product\": \"usb charging cable\"},\n", " ]\n", " }\n", "\n", "tools = [\n", " {\n", " \"name\": \"send_text_to_user\",\n", " \"description\": \"Sends a text message to a user\",\n", " \"input_schema\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"text\": {\"type\": \"string\", \"description\": \"The piece of text to be sent to the user via text message\"},\n", " },\n", " \"required\": [\"text\"]\n", " }\n", " },\n", " {\n", " \"name\": \"get_customer_info\",\n", " \"description\": \"gets information on a customer based on the customer's username. Response includes email, username, and previous purchases. Only call this tool once a user has provided you with their username\",\n", " \"input_schema\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"username\": {\"type\": \"string\", \"description\": \"The username of the user in question. \"},\n", " },\n", " \"required\": [\"username\"]\n", " }\n", " },\n", "]\n", "\n", "system_prompt = \"\"\"\n", "All your communication with a user is done via text message.\n", "Only call tools when you have enough information to accurately call them. \n", "Do not call the get_customer_info tool until a user has provided you with their username. This is important.\n", "If you do not know a user's username, simply ask a user for their username.\n", "\"\"\"\n", "\n", "def sms_chatbot(user_message):\n", " messages = [{\"role\": \"user\", \"content\":user_message}]\n", "\n", " response = client.messages.create(\n", " system=system_prompt,\n", " model=\"claude-3-sonnet-20240229\",\n", " max_tokens=4096,\n", " tools=tools,\n", " tool_choice={\"type\": \"any\"},\n", " messages=messages\n", " )\n", " if response.stop_reason == \"tool_use\":\n", " last_content_block = response.content[-1]\n", " if last_content_block.type == 'tool_use':\n", " tool_name = last_content_block.name\n", " tool_inputs = last_content_block.input\n", " print(f\"=======Claude Wants To Call The {tool_name} Tool=======\")\n", " if tool_name == \"send_text_to_user\":\n", " send_text_to_user(tool_inputs[\"text\"])\n", " elif tool_name == \"get_customer_info\":\n", " print(get_customer_info(tool_inputs[\"username\"]))\n", " else:\n", " print(\"Oh dear, that tool doesn't exist!\")\n", " \n", " else:\n", " print(\"No tool was called. This shouldn't happen!\")\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's start simple:" ] }, { "cell_type": "code", "execution_count": 163, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=======Claude Wants To Call The send_text_to_user Tool=======\n", "TEXT MESSAGE SENT: Hello! I'm doing well, thanks for asking. How can I assist you today?\n" ] } ], "source": [ "sms_chatbot(\"Hey there! How are you?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude responds back by calling the `send_text_to_user` tool.\n", "\n", "Next, we'll ask Claude something a bit trickier:" ] }, { "cell_type": "code", "execution_count": 164, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=======Claude Wants To Call The send_text_to_user Tool=======\n", "TEXT MESSAGE SENT: Hi there, to look up your order details I'll need your username first. Can you please provide me with your username?\n" ] } ], "source": [ "sms_chatbot(\"I need help looking up an order\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude wants to send a text message, asking a user to provide their username.\n", "\n", "Now, let's see what happens when we provide Claude with our username:" ] }, { "cell_type": "code", "execution_count": 165, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=======Claude Wants To Call The get_customer_info Tool=======\n", "{'username': 'jenny76', 'email': 'jenny76@email.com', 'purchases': [{'id': 1, 'product': 'computer mouse'}, {'id': 2, 'product': 'screen protector'}, {'id': 3, 'product': 'usb charging cable'}]}\n" ] } ], "source": [ "sms_chatbot(\"I need help looking up an order. My username is jenny76\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Claude calls the `get_customer_info` tool, just as we hoped! \n", "\n", "Even if we send Claude a gibberish message, it will still call one of our tools:" ] }, { "cell_type": "code", "execution_count": 166, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=======Claude Wants To Call The send_text_to_user Tool=======\n", "TEXT MESSAGE SENT: I'm afraid I didn't understand your query. Could you please rephrase what you need help with?\n" ] } ], "source": [ "sms_chatbot(\"askdj aksjdh asjkdbhas kjdhas 1+1 ajsdh\")" ] } ], "metadata": { "kernelspec": { "display_name": "py311", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }