Files
TradingAgents/tradingagents/agents/utils/agent_utils.py
2025-06-15 22:20:59 -07:00

420 lines
15 KiB
Python

from langchain_core.messages import BaseMessage, HumanMessage, ToolMessage, AIMessage
from typing import List
from typing import Annotated
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import RemoveMessage
from langchain_core.tools import tool
from datetime import date, timedelta, datetime
import functools
import pandas as pd
import os
from dateutil.relativedelta import relativedelta
from langchain_openai import ChatOpenAI
import tradingagents.dataflows.interface as interface
from tradingagents.default_config import DEFAULT_CONFIG
from langchain_core.messages import HumanMessage
def create_msg_delete():
def delete_messages(state):
"""Clear messages and add placeholder for Anthropic compatibility"""
messages = state["messages"]
# Remove all messages
removal_operations = [RemoveMessage(id=m.id) for m in messages]
# Add a minimal placeholder message
placeholder = HumanMessage(content="Continue analysis")
return {"messages": removal_operations + [placeholder]}
return delete_messages
class Toolkit:
_config = DEFAULT_CONFIG.copy()
@classmethod
def update_config(cls, config):
"""Update the class-level configuration."""
cls._config.update(config)
@property
def config(self):
"""Access the configuration."""
return self._config
def __init__(self, config=None):
if config:
self.update_config(config)
@staticmethod
@tool
def get_reddit_news(
curr_date: Annotated[str, "Date you want to get news for in yyyy-mm-dd format"],
) -> str:
"""
Retrieve global news from Reddit within a specified time frame.
Args:
curr_date (str): Date you want to get news for in yyyy-mm-dd format
Returns:
str: A formatted dataframe containing the latest global news from Reddit in the specified time frame.
"""
global_news_result = interface.get_reddit_global_news(curr_date, 7, 5)
return global_news_result
@staticmethod
@tool
def get_finnhub_news(
ticker: Annotated[
str,
"Search query of a company, e.g. 'AAPL, TSM, etc.",
],
start_date: Annotated[str, "Start date in yyyy-mm-dd format"],
end_date: Annotated[str, "End date in yyyy-mm-dd format"],
):
"""
Retrieve the latest news about a given stock from Finnhub within a date range
Args:
ticker (str): Ticker of a company. e.g. AAPL, TSM
start_date (str): Start date in yyyy-mm-dd format
end_date (str): End date in yyyy-mm-dd format
Returns:
str: A formatted dataframe containing news about the company within the date range from start_date to end_date
"""
end_date_str = end_date
end_date = datetime.strptime(end_date, "%Y-%m-%d")
start_date = datetime.strptime(start_date, "%Y-%m-%d")
look_back_days = (end_date - start_date).days
finnhub_news_result = interface.get_finnhub_news(
ticker, end_date_str, look_back_days
)
return finnhub_news_result
@staticmethod
@tool
def get_reddit_stock_info(
ticker: Annotated[
str,
"Ticker of a company. e.g. AAPL, TSM",
],
curr_date: Annotated[str, "Current date you want to get news for"],
) -> str:
"""
Retrieve the latest news about a given stock from Reddit, given the current date.
Args:
ticker (str): Ticker of a company. e.g. AAPL, TSM
curr_date (str): current date in yyyy-mm-dd format to get news for
Returns:
str: A formatted dataframe containing the latest news about the company on the given date
"""
stock_news_results = interface.get_reddit_company_news(ticker, curr_date, 7, 5)
return stock_news_results
@staticmethod
@tool
def get_YFin_data(
symbol: Annotated[str, "ticker symbol of the company"],
start_date: Annotated[str, "Start date in yyyy-mm-dd format"],
end_date: Annotated[str, "Start date in yyyy-mm-dd format"],
) -> str:
"""
Retrieve the stock price data for a given ticker symbol from Yahoo Finance.
Args:
symbol (str): Ticker symbol of the company, e.g. AAPL, TSM
start_date (str): Start date in yyyy-mm-dd format
end_date (str): End date in yyyy-mm-dd format
Returns:
str: A formatted dataframe containing the stock price data for the specified ticker symbol in the specified date range.
"""
result_data = interface.get_YFin_data(symbol, start_date, end_date)
return result_data
@staticmethod
@tool
def get_YFin_data_online(
symbol: Annotated[str, "ticker symbol of the company"],
start_date: Annotated[str, "Start date in yyyy-mm-dd format"],
end_date: Annotated[str, "Start date in yyyy-mm-dd format"],
) -> str:
"""
Retrieve the stock price data for a given ticker symbol from Yahoo Finance.
Args:
symbol (str): Ticker symbol of the company, e.g. AAPL, TSM
start_date (str): Start date in yyyy-mm-dd format
end_date (str): End date in yyyy-mm-dd format
Returns:
str: A formatted dataframe containing the stock price data for the specified ticker symbol in the specified date range.
"""
result_data = interface.get_YFin_data_online(symbol, start_date, end_date)
return result_data
@staticmethod
@tool
def get_stockstats_indicators_report(
symbol: Annotated[str, "ticker symbol of the company"],
indicator: Annotated[
str, "technical indicator to get the analysis and report of"
],
curr_date: Annotated[
str, "The current trading date you are trading on, YYYY-mm-dd"
],
look_back_days: Annotated[int, "how many days to look back"] = 30,
) -> str:
"""
Retrieve stock stats indicators for a given ticker symbol and indicator.
Args:
symbol (str): Ticker symbol of the company, e.g. AAPL, TSM
indicator (str): Technical indicator to get the analysis and report of
curr_date (str): The current trading date you are trading on, YYYY-mm-dd
look_back_days (int): How many days to look back, default is 30
Returns:
str: A formatted dataframe containing the stock stats indicators for the specified ticker symbol and indicator.
"""
result_stockstats = interface.get_stock_stats_indicators_window(
symbol, indicator, curr_date, look_back_days, False
)
return result_stockstats
@staticmethod
@tool
def get_stockstats_indicators_report_online(
symbol: Annotated[str, "ticker symbol of the company"],
indicator: Annotated[
str, "technical indicator to get the analysis and report of"
],
curr_date: Annotated[
str, "The current trading date you are trading on, YYYY-mm-dd"
],
look_back_days: Annotated[int, "how many days to look back"] = 30,
) -> str:
"""
Retrieve stock stats indicators for a given ticker symbol and indicator.
Args:
symbol (str): Ticker symbol of the company, e.g. AAPL, TSM
indicator (str): Technical indicator to get the analysis and report of
curr_date (str): The current trading date you are trading on, YYYY-mm-dd
look_back_days (int): How many days to look back, default is 30
Returns:
str: A formatted dataframe containing the stock stats indicators for the specified ticker symbol and indicator.
"""
result_stockstats = interface.get_stock_stats_indicators_window(
symbol, indicator, curr_date, look_back_days, True
)
return result_stockstats
@staticmethod
@tool
def get_finnhub_company_insider_sentiment(
ticker: Annotated[str, "ticker symbol for the company"],
curr_date: Annotated[
str,
"current date of you are trading at, yyyy-mm-dd",
],
):
"""
Retrieve insider sentiment information about a company (retrieved from public SEC information) for the past 30 days
Args:
ticker (str): ticker symbol of the company
curr_date (str): current date you are trading at, yyyy-mm-dd
Returns:
str: a report of the sentiment in the past 30 days starting at curr_date
"""
data_sentiment = interface.get_finnhub_company_insider_sentiment(
ticker, curr_date, 30
)
return data_sentiment
@staticmethod
@tool
def get_finnhub_company_insider_transactions(
ticker: Annotated[str, "ticker symbol"],
curr_date: Annotated[
str,
"current date you are trading at, yyyy-mm-dd",
],
):
"""
Retrieve insider transaction information about a company (retrieved from public SEC information) for the past 30 days
Args:
ticker (str): ticker symbol of the company
curr_date (str): current date you are trading at, yyyy-mm-dd
Returns:
str: a report of the company's insider transactions/trading information in the past 30 days
"""
data_trans = interface.get_finnhub_company_insider_transactions(
ticker, curr_date, 30
)
return data_trans
@staticmethod
@tool
def get_simfin_balance_sheet(
ticker: Annotated[str, "ticker symbol"],
freq: Annotated[
str,
"reporting frequency of the company's financial history: annual/quarterly",
],
curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"],
):
"""
Retrieve the most recent balance sheet of a company
Args:
ticker (str): ticker symbol of the company
freq (str): reporting frequency of the company's financial history: annual / quarterly
curr_date (str): current date you are trading at, yyyy-mm-dd
Returns:
str: a report of the company's most recent balance sheet
"""
data_balance_sheet = interface.get_simfin_balance_sheet(ticker, freq, curr_date)
return data_balance_sheet
@staticmethod
@tool
def get_simfin_cashflow(
ticker: Annotated[str, "ticker symbol"],
freq: Annotated[
str,
"reporting frequency of the company's financial history: annual/quarterly",
],
curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"],
):
"""
Retrieve the most recent cash flow statement of a company
Args:
ticker (str): ticker symbol of the company
freq (str): reporting frequency of the company's financial history: annual / quarterly
curr_date (str): current date you are trading at, yyyy-mm-dd
Returns:
str: a report of the company's most recent cash flow statement
"""
data_cashflow = interface.get_simfin_cashflow(ticker, freq, curr_date)
return data_cashflow
@staticmethod
@tool
def get_simfin_income_stmt(
ticker: Annotated[str, "ticker symbol"],
freq: Annotated[
str,
"reporting frequency of the company's financial history: annual/quarterly",
],
curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"],
):
"""
Retrieve the most recent income statement of a company
Args:
ticker (str): ticker symbol of the company
freq (str): reporting frequency of the company's financial history: annual / quarterly
curr_date (str): current date you are trading at, yyyy-mm-dd
Returns:
str: a report of the company's most recent income statement
"""
data_income_stmt = interface.get_simfin_income_statements(
ticker, freq, curr_date
)
return data_income_stmt
@staticmethod
@tool
def get_google_news(
query: Annotated[str, "Query to search with"],
curr_date: Annotated[str, "Curr date in yyyy-mm-dd format"],
):
"""
Retrieve the latest news from Google News based on a query and date range.
Args:
query (str): Query to search with
curr_date (str): Current date in yyyy-mm-dd format
look_back_days (int): How many days to look back
Returns:
str: A formatted string containing the latest news from Google News based on the query and date range.
"""
google_news_results = interface.get_google_news(query, curr_date, 7)
return google_news_results
@staticmethod
@tool
def get_stock_news_openai(
ticker: Annotated[str, "the company's ticker"],
curr_date: Annotated[str, "Current date in yyyy-mm-dd format"],
):
"""
Retrieve the latest news about a given stock by using OpenAI's news API.
Args:
ticker (str): Ticker of a company. e.g. AAPL, TSM
curr_date (str): Current date in yyyy-mm-dd format
Returns:
str: A formatted string containing the latest news about the company on the given date.
"""
openai_news_results = interface.get_stock_news_openai(ticker, curr_date)
return openai_news_results
@staticmethod
@tool
def get_global_news_openai(
curr_date: Annotated[str, "Current date in yyyy-mm-dd format"],
):
"""
Retrieve the latest macroeconomics news on a given date using OpenAI's macroeconomics news API.
Args:
curr_date (str): Current date in yyyy-mm-dd format
Returns:
str: A formatted string containing the latest macroeconomic news on the given date.
"""
openai_news_results = interface.get_global_news_openai(curr_date)
return openai_news_results
@staticmethod
@tool
def get_fundamentals_openai(
ticker: Annotated[str, "the company's ticker"],
curr_date: Annotated[str, "Current date in yyyy-mm-dd format"],
):
"""
Retrieve the latest fundamental information about a given stock on a given date by using OpenAI's news API.
Args:
ticker (str): Ticker of a company. e.g. AAPL, TSM
curr_date (str): Current date in yyyy-mm-dd format
Returns:
str: A formatted string containing the latest fundamental information about the company on the given date.
"""
openai_fundamentals_results = interface.get_fundamentals_openai(
ticker, curr_date
)
return openai_fundamentals_results