88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
import pandas as pd
|
|
import yfinance as yf
|
|
from stockstats import wrap
|
|
from typing import Annotated
|
|
import os
|
|
from .config import get_config
|
|
|
|
|
|
class StockstatsUtils:
|
|
@staticmethod
|
|
def get_stock_stats(
|
|
symbol: Annotated[str, "ticker symbol for the company"],
|
|
indicator: Annotated[
|
|
str, "quantitative indicators based off of the stock data for the company"
|
|
],
|
|
curr_date: Annotated[
|
|
str, "curr date for retrieving stock price data, YYYY-mm-dd"
|
|
],
|
|
data_dir: Annotated[
|
|
str,
|
|
"directory where the stock data is stored.",
|
|
],
|
|
online: Annotated[
|
|
bool,
|
|
"whether to use online tools to fetch data or offline tools. If True, will use online tools.",
|
|
] = False,
|
|
):
|
|
df = None
|
|
data = None
|
|
|
|
if not online:
|
|
try:
|
|
data = pd.read_csv(
|
|
os.path.join(
|
|
data_dir,
|
|
f"{symbol}-YFin-data-2015-01-01-2025-03-25.csv",
|
|
)
|
|
)
|
|
df = wrap(data)
|
|
except FileNotFoundError:
|
|
raise Exception("Stockstats fail: Yahoo Finance data not fetched yet!")
|
|
else:
|
|
# Get today's date as YYYY-mm-dd to add to cache
|
|
today_date = pd.Timestamp.today()
|
|
curr_date = pd.to_datetime(curr_date)
|
|
|
|
end_date = today_date
|
|
start_date = today_date - pd.DateOffset(years=15)
|
|
start_date = start_date.strftime("%Y-%m-%d")
|
|
end_date = end_date.strftime("%Y-%m-%d")
|
|
|
|
# Get config and ensure cache directory exists
|
|
config = get_config()
|
|
os.makedirs(config["data_cache_dir"], exist_ok=True)
|
|
|
|
data_file = os.path.join(
|
|
config["data_cache_dir"],
|
|
f"{symbol}-YFin-data-{start_date}-{end_date}.csv",
|
|
)
|
|
|
|
if os.path.exists(data_file):
|
|
data = pd.read_csv(data_file)
|
|
data["Date"] = pd.to_datetime(data["Date"])
|
|
else:
|
|
data = yf.download(
|
|
symbol,
|
|
start=start_date,
|
|
end=end_date,
|
|
multi_level_index=False,
|
|
progress=False,
|
|
auto_adjust=True,
|
|
)
|
|
data = data.reset_index()
|
|
data.to_csv(data_file, index=False)
|
|
|
|
df = wrap(data)
|
|
df["Date"] = df["Date"].dt.strftime("%Y-%m-%d")
|
|
curr_date = curr_date.strftime("%Y-%m-%d")
|
|
|
|
df[indicator] # trigger stockstats to calculate the indicator
|
|
matching_rows = df[df["Date"].str.startswith(curr_date)]
|
|
|
|
if not matching_rows.empty:
|
|
indicator_value = matching_rows[indicator].values[0]
|
|
return indicator_value
|
|
else:
|
|
return "N/A: Not a trading day (weekend or holiday)"
|