Files
TradingAgents/tradingagents/agents/utils/memory.py
maxer137 99789f9cd1 Add support for other backends, such as OpenRouter and olama
This aims to offer alternative OpenAI capable api's.
This offers people to experiment with running the application locally
2025-06-11 14:19:25 +02:00

114 lines
4.2 KiB
Python

import chromadb
from chromadb.config import Settings
from openai import OpenAI
class FinancialSituationMemory:
def __init__(self, name, config):
if config["openai_backend"] == "http://localhost:11434/v1":
self.embedding = "nomic-embed-text"
else:
self.embedding = "text-embedding-ada-002"
self.client = OpenAI(base_url=config["openai_backend"])
self.chroma_client = chromadb.Client(Settings(allow_reset=True))
self.situation_collection = self.chroma_client.create_collection(name=name)
def get_embedding(self, text):
"""Get OpenAI embedding for a text"""
response = self.client.embeddings.create(
model=self.embedding, input=text
)
return response.data[0].embedding
def add_situations(self, situations_and_advice):
"""Add financial situations and their corresponding advice. Parameter is a list of tuples (situation, rec)"""
situations = []
advice = []
ids = []
embeddings = []
offset = self.situation_collection.count()
for i, (situation, recommendation) in enumerate(situations_and_advice):
situations.append(situation)
advice.append(recommendation)
ids.append(str(offset + i))
embeddings.append(self.get_embedding(situation))
self.situation_collection.add(
documents=situations,
metadatas=[{"recommendation": rec} for rec in advice],
embeddings=embeddings,
ids=ids,
)
def get_memories(self, current_situation, n_matches=1):
"""Find matching recommendations using OpenAI embeddings"""
query_embedding = self.get_embedding(current_situation)
results = self.situation_collection.query(
query_embeddings=[query_embedding],
n_results=n_matches,
include=["metadatas", "documents", "distances"],
)
matched_results = []
for i in range(len(results["documents"][0])):
matched_results.append(
{
"matched_situation": results["documents"][0][i],
"recommendation": results["metadatas"][0][i]["recommendation"],
"similarity_score": 1 - results["distances"][0][i],
}
)
return matched_results
if __name__ == "__main__":
# Example usage
matcher = FinancialSituationMemory()
# Example data
example_data = [
(
"High inflation rate with rising interest rates and declining consumer spending",
"Consider defensive sectors like consumer staples and utilities. Review fixed-income portfolio duration.",
),
(
"Tech sector showing high volatility with increasing institutional selling pressure",
"Reduce exposure to high-growth tech stocks. Look for value opportunities in established tech companies with strong cash flows.",
),
(
"Strong dollar affecting emerging markets with increasing forex volatility",
"Hedge currency exposure in international positions. Consider reducing allocation to emerging market debt.",
),
(
"Market showing signs of sector rotation with rising yields",
"Rebalance portfolio to maintain target allocations. Consider increasing exposure to sectors benefiting from higher rates.",
),
]
# Add the example situations and recommendations
matcher.add_situations(example_data)
# Example query
current_situation = """
Market showing increased volatility in tech sector, with institutional investors
reducing positions and rising interest rates affecting growth stock valuations
"""
try:
recommendations = matcher.get_memories(current_situation, n_matches=2)
for i, rec in enumerate(recommendations, 1):
print(f"\nMatch {i}:")
print(f"Similarity Score: {rec['similarity_score']:.2f}")
print(f"Matched Situation: {rec['matched_situation']}")
print(f"Recommendation: {rec['recommendation']}")
except Exception as e:
print(f"Error during recommendation: {str(e)}")