from tradingagents.graph.trading_graph import TradingAgentsGraph from tradingagents.default_config import DEFAULT_CONFIG # Create a custom config config = DEFAULT_CONFIG.copy() config["deep_think_llm"] = "gpt-4.1-nano" # Use a different model config["quick_think_llm"] = "gpt-4.1-nano" # Use a different model config["max_debate_rounds"] = 1 # Increase debate rounds config["online_tools"] = True # Increase debate rounds # Initialize with custom config ta = TradingAgentsGraph(debug=True, config=config) # forward propagate _, decision = ta.propagate("NVDA", "2024-05-10") print(decision) # Memorize mistakes and reflect # ta.reflect_and_remember(1000) # parameter is the position returns