chore(release): v0.1.0 – initial public release of TradingAgents
This commit is contained in:
117
tradingagents/dataflows/yfin_utils.py
Normal file
117
tradingagents/dataflows/yfin_utils.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# gets data/stats
|
||||
|
||||
import yfinance as yf
|
||||
from typing import Annotated, Callable, Any, Optional
|
||||
from pandas import DataFrame
|
||||
import pandas as pd
|
||||
from functools import wraps
|
||||
|
||||
from .utils import save_output, SavePathType, decorate_all_methods
|
||||
|
||||
|
||||
def init_ticker(func: Callable) -> Callable:
|
||||
"""Decorator to initialize yf.Ticker and pass it to the function."""
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(symbol: Annotated[str, "ticker symbol"], *args, **kwargs) -> Any:
|
||||
ticker = yf.Ticker(symbol)
|
||||
return func(ticker, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@decorate_all_methods(init_ticker)
|
||||
class YFinanceUtils:
|
||||
|
||||
def get_stock_data(
|
||||
symbol: Annotated[str, "ticker symbol"],
|
||||
start_date: Annotated[
|
||||
str, "start date for retrieving stock price data, YYYY-mm-dd"
|
||||
],
|
||||
end_date: Annotated[
|
||||
str, "end date for retrieving stock price data, YYYY-mm-dd"
|
||||
],
|
||||
save_path: SavePathType = None,
|
||||
) -> DataFrame:
|
||||
"""retrieve stock price data for designated ticker symbol"""
|
||||
ticker = symbol
|
||||
# add one day to the end_date so that the data range is inclusive
|
||||
end_date = pd.to_datetime(end_date) + pd.DateOffset(days=1)
|
||||
end_date = end_date.strftime("%Y-%m-%d")
|
||||
stock_data = ticker.history(start=start_date, end=end_date)
|
||||
# save_output(stock_data, f"Stock data for {ticker.ticker}", save_path)
|
||||
return stock_data
|
||||
|
||||
def get_stock_info(
|
||||
symbol: Annotated[str, "ticker symbol"],
|
||||
) -> dict:
|
||||
"""Fetches and returns latest stock information."""
|
||||
ticker = symbol
|
||||
stock_info = ticker.info
|
||||
return stock_info
|
||||
|
||||
def get_company_info(
|
||||
symbol: Annotated[str, "ticker symbol"],
|
||||
save_path: Optional[str] = None,
|
||||
) -> DataFrame:
|
||||
"""Fetches and returns company information as a DataFrame."""
|
||||
ticker = symbol
|
||||
info = ticker.info
|
||||
company_info = {
|
||||
"Company Name": info.get("shortName", "N/A"),
|
||||
"Industry": info.get("industry", "N/A"),
|
||||
"Sector": info.get("sector", "N/A"),
|
||||
"Country": info.get("country", "N/A"),
|
||||
"Website": info.get("website", "N/A"),
|
||||
}
|
||||
company_info_df = DataFrame([company_info])
|
||||
if save_path:
|
||||
company_info_df.to_csv(save_path)
|
||||
print(f"Company info for {ticker.ticker} saved to {save_path}")
|
||||
return company_info_df
|
||||
|
||||
def get_stock_dividends(
|
||||
symbol: Annotated[str, "ticker symbol"],
|
||||
save_path: Optional[str] = None,
|
||||
) -> DataFrame:
|
||||
"""Fetches and returns the latest dividends data as a DataFrame."""
|
||||
ticker = symbol
|
||||
dividends = ticker.dividends
|
||||
if save_path:
|
||||
dividends.to_csv(save_path)
|
||||
print(f"Dividends for {ticker.ticker} saved to {save_path}")
|
||||
return dividends
|
||||
|
||||
def get_income_stmt(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
|
||||
"""Fetches and returns the latest income statement of the company as a DataFrame."""
|
||||
ticker = symbol
|
||||
income_stmt = ticker.financials
|
||||
return income_stmt
|
||||
|
||||
def get_balance_sheet(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
|
||||
"""Fetches and returns the latest balance sheet of the company as a DataFrame."""
|
||||
ticker = symbol
|
||||
balance_sheet = ticker.balance_sheet
|
||||
return balance_sheet
|
||||
|
||||
def get_cash_flow(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
|
||||
"""Fetches and returns the latest cash flow statement of the company as a DataFrame."""
|
||||
ticker = symbol
|
||||
cash_flow = ticker.cashflow
|
||||
return cash_flow
|
||||
|
||||
def get_analyst_recommendations(symbol: Annotated[str, "ticker symbol"]) -> tuple:
|
||||
"""Fetches the latest analyst recommendations and returns the most common recommendation and its count."""
|
||||
ticker = symbol
|
||||
recommendations = ticker.recommendations
|
||||
if recommendations.empty:
|
||||
return None, 0 # No recommendations available
|
||||
|
||||
# Assuming 'period' column exists and needs to be excluded
|
||||
row_0 = recommendations.iloc[0, 1:] # Exclude 'period' column if necessary
|
||||
|
||||
# Find the maximum voting result
|
||||
max_votes = row_0.max()
|
||||
majority_voting_result = row_0[row_0 == max_votes].index.tolist()
|
||||
|
||||
return majority_voting_result[0], max_votes
|
||||
Reference in New Issue
Block a user