chore(release): v0.1.0 – initial public release of TradingAgents
This commit is contained in:
61
tradingagents/agents/researchers/bear_researcher.py
Normal file
61
tradingagents/agents/researchers/bear_researcher.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from langchain_core.messages import AIMessage
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
def create_bear_researcher(llm, memory):
|
||||
def bear_node(state) -> dict:
|
||||
investment_debate_state = state["investment_debate_state"]
|
||||
history = investment_debate_state.get("history", "")
|
||||
bear_history = investment_debate_state.get("bear_history", "")
|
||||
|
||||
current_response = investment_debate_state.get("current_response", "")
|
||||
market_research_report = state["market_report"]
|
||||
sentiment_report = state["sentiment_report"]
|
||||
news_report = state["news_report"]
|
||||
fundamentals_report = state["fundamentals_report"]
|
||||
|
||||
curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}"
|
||||
past_memories = memory.get_memories(curr_situation, n_matches=2)
|
||||
|
||||
past_memory_str = ""
|
||||
for i, rec in enumerate(past_memories, 1):
|
||||
past_memory_str += rec["recommendation"] + "\n\n"
|
||||
|
||||
prompt = f"""You are a Bear Analyst making the case against investing in the stock. Your goal is to present a well-reasoned argument emphasizing risks, challenges, and negative indicators. Leverage the provided research and data to highlight potential downsides and counter bullish arguments effectively.
|
||||
|
||||
Key points to focus on:
|
||||
|
||||
- Risks and Challenges: Highlight factors like market saturation, financial instability, or macroeconomic threats that could hinder the stock's performance.
|
||||
- Competitive Weaknesses: Emphasize vulnerabilities such as weaker market positioning, declining innovation, or threats from competitors.
|
||||
- Negative Indicators: Use evidence from financial data, market trends, or recent adverse news to support your position.
|
||||
- Bull Counterpoints: Critically analyze the bull argument with specific data and sound reasoning, exposing weaknesses or over-optimistic assumptions.
|
||||
- Engagement: Present your argument in a conversational style, directly engaging with the bull analyst's points and debating effectively rather than simply listing facts.
|
||||
|
||||
Resources available:
|
||||
|
||||
Market research report: {market_research_report}
|
||||
Social media sentiment report: {sentiment_report}
|
||||
Latest world affairs news: {news_report}
|
||||
Company fundamentals report: {fundamentals_report}
|
||||
Conversation history of the debate: {history}
|
||||
Last bull argument: {current_response}
|
||||
Reflections from similar situations and lessons learned: {past_memory_str}
|
||||
Use this information to deliver a compelling bear argument, refute the bull's claims, and engage in a dynamic debate that demonstrates the risks and weaknesses of investing in the stock. You must also address reflections and learn from lessons and mistakes you made in the past.
|
||||
"""
|
||||
|
||||
response = llm.invoke(prompt)
|
||||
|
||||
argument = f"Bear Analyst: {response.content}"
|
||||
|
||||
new_investment_debate_state = {
|
||||
"history": history + "\n" + argument,
|
||||
"bear_history": bear_history + "\n" + argument,
|
||||
"bull_history": investment_debate_state.get("bull_history", ""),
|
||||
"current_response": argument,
|
||||
"count": investment_debate_state["count"] + 1,
|
||||
}
|
||||
|
||||
return {"investment_debate_state": new_investment_debate_state}
|
||||
|
||||
return bear_node
|
||||
59
tradingagents/agents/researchers/bull_researcher.py
Normal file
59
tradingagents/agents/researchers/bull_researcher.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from langchain_core.messages import AIMessage
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
def create_bull_researcher(llm, memory):
|
||||
def bull_node(state) -> dict:
|
||||
investment_debate_state = state["investment_debate_state"]
|
||||
history = investment_debate_state.get("history", "")
|
||||
bull_history = investment_debate_state.get("bull_history", "")
|
||||
|
||||
current_response = investment_debate_state.get("current_response", "")
|
||||
market_research_report = state["market_report"]
|
||||
sentiment_report = state["sentiment_report"]
|
||||
news_report = state["news_report"]
|
||||
fundamentals_report = state["fundamentals_report"]
|
||||
|
||||
curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}"
|
||||
past_memories = memory.get_memories(curr_situation, n_matches=2)
|
||||
|
||||
past_memory_str = ""
|
||||
for i, rec in enumerate(past_memories, 1):
|
||||
past_memory_str += rec["recommendation"] + "\n\n"
|
||||
|
||||
prompt = f"""You are a Bull Analyst advocating for investing in the stock. Your task is to build a strong, evidence-based case emphasizing growth potential, competitive advantages, and positive market indicators. Leverage the provided research and data to address concerns and counter bearish arguments effectively.
|
||||
|
||||
Key points to focus on:
|
||||
- Growth Potential: Highlight the company's market opportunities, revenue projections, and scalability.
|
||||
- Competitive Advantages: Emphasize factors like unique products, strong branding, or dominant market positioning.
|
||||
- Positive Indicators: Use financial health, industry trends, and recent positive news as evidence.
|
||||
- Bear Counterpoints: Critically analyze the bear argument with specific data and sound reasoning, addressing concerns thoroughly and showing why the bull perspective holds stronger merit.
|
||||
- Engagement: Present your argument in a conversational style, engaging directly with the bear analyst's points and debating effectively rather than just listing data.
|
||||
|
||||
Resources available:
|
||||
Market research report: {market_research_report}
|
||||
Social media sentiment report: {sentiment_report}
|
||||
Latest world affairs news: {news_report}
|
||||
Company fundamentals report: {fundamentals_report}
|
||||
Conversation history of the debate: {history}
|
||||
Last bear argument: {current_response}
|
||||
Reflections from similar situations and lessons learned: {past_memory_str}
|
||||
Use this information to deliver a compelling bull argument, refute the bear's concerns, and engage in a dynamic debate that demonstrates the strengths of the bull position. You must also address reflections and learn from lessons and mistakes you made in the past.
|
||||
"""
|
||||
|
||||
response = llm.invoke(prompt)
|
||||
|
||||
argument = f"Bull Analyst: {response.content}"
|
||||
|
||||
new_investment_debate_state = {
|
||||
"history": history + "\n" + argument,
|
||||
"bull_history": bull_history + "\n" + argument,
|
||||
"bear_history": investment_debate_state.get("bear_history", ""),
|
||||
"current_response": argument,
|
||||
"count": investment_debate_state["count"] + 1,
|
||||
}
|
||||
|
||||
return {"investment_debate_state": new_investment_debate_state}
|
||||
|
||||
return bull_node
|
||||
Reference in New Issue
Block a user