更新其他语言ReadMe

This commit is contained in:
starylan
2025-02-28 02:51:24 +08:00
parent e9af7921fa
commit ff299d17d3
4 changed files with 123 additions and 60 deletions

View File

@@ -9,7 +9,7 @@
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
[![License](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Models%20Repo-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
[![Huggingface](https://img.shields.io/badge/🤗%20-online%20demo-yellow.svg?style=for-the-badge)](https://huggingface.co/spaces/lj1995/GPT-SoVITS-v2)
[![Discord](https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge)](https://discord.gg/dnrgs5GHfG)
[**English**](../../README.md) | [**中文简体**](../cn/README.md) | **日本語** | [**한국어**](../ko/README.md) | [**Türkçe**](../tr/README.md)
@@ -195,17 +195,12 @@ python webui.py v1 <言語(オプション)>
#### パス自動補完のサポート
1.音声パスを入力する
2.音声を小さなチャンクに分割する
3.ノイズ除去(オプション)
4.ASR
5.ASR転写を校正する
6.次のタブに移動し、モデルを微調整する
1. 音声パスを入力する
2. 音声を小さなチャンクに分割する
3. ノイズ除去(オプション)
4. ASR
5. ASR転写を校正する
6. 次のタブに移動し、モデルを微調整する
### 推論WebUIを開く
@@ -249,7 +244,25 @@ V1環境からV2を使用するには:
中国語V2追加: [G2PWModel_1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip)G2PWモデルをダウンロードし、解凍して`G2PWModel`にリネームし、`GPT_SoVITS/text`に配置します)
## V3 リリースノート
新機能:
1. 音色の類似性が向上し、ターゲットスピーカーを近似するために必要な学習データが少なくなりました(音色の類似性は、ファインチューニングなしでベースモデルを直接使用することで顕著に改善されます)。
2. GPTモデルがより安定し、繰り返しや省略が減少し、より豊かな感情表現を持つ音声の生成が容易になりました。
[詳細情報はこちら](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7))
v2 環境から v3 を使用する方法:
1. `pip install -r requirements.txt` を実行して、いくつかのパッケージを更新します。
2. GitHubから最新のコードをクローンします。
3. v3の事前学習済みモデルs1v3.ckpt、s2Gv3.pth、models--nvidia--bigvgan_v2_24khz_100band_256x フォルダ)を[Huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) からダウンロードし、GPT_SoVITS\pretrained_models フォルダに配置します。
追加: 音声超解像モデルについては、[ダウンロード方法](../../tools/AP_BWE_main/24kto48k/readme.txt)を参照してください。
## Todo リスト
@@ -276,10 +289,10 @@ V1環境からV2を使用するには:
```
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
```
ブラウザを開けない場合は、以下の形式に従って UVR 処理を行ってください。これはオーディオ処理に mdxnet を使用しています。
```
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
<!-- ブラウザを開けない場合は、以下の形式に従って UVR 処理を行ってください。これはオーディオ処理に mdxnet を使用しています。
```
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
``` -->
コマンド ラインを使用してデータセットのオーディオ セグメンテーションを行う方法は次のとおりです。
```
python audio_slicer.py \
@@ -287,7 +300,7 @@ python audio_slicer.py \
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
--threshold <volume_threshold> \
--min_length <minimum_duration_of_each_subclip> \
--min_interval <shortest_time_gap_between_adjacent_subclips>
--min_interval <shortest_time_gap_between_adjacent_subclips>
--hop_size <step_size_for_computing_volume_curve>
```
コマンドラインを使用してデータセット ASR 処理を行う方法です (中国語のみ)
@@ -314,12 +327,18 @@ python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p
- [contentvec](https://github.com/auspicious3000/contentvec/)
- [hifi-gan](https://github.com/jik876/hifi-gan)
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
- [f5-TTS](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py)
- [shortcut flow matching](https://github.com/kvfrans/shortcut-models/blob/main/targets_shortcut.py)
### 事前学習モデル
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
### 推論用テキストフロントエンド
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
- [LangSegment](https://github.com/juntaosun/LangSegment)
- [split-lang](https://github.com/DoodleBears/split-lang)
- [g2pW](https://github.com/GitYCC/g2pW)
- [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
- [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
### WebUI ツール
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
@@ -328,6 +347,7 @@ python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p
- [gradio](https://github.com/gradio-app/gradio)
- [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
- [FunASR](https://github.com/alibaba-damo-academy/FunASR)
- [AP-BWE](https://github.com/yxlu-0102/AP-BWE)
@Naozumi520 さん、広東語のトレーニングセットの提供と、広東語に関する知識のご指導をいただき、感謝申し上げます。