gpt_sovits_v3

gpt_sovits_v3
This commit is contained in:
RVC-Boss
2025-02-11 21:07:03 +08:00
committed by GitHub
parent ed207c4b87
commit fa42d26d0e
4 changed files with 585 additions and 56 deletions

View File

@@ -7,8 +7,7 @@
全部按日文识别
'''
import logging
import traceback
import traceback,torchaudio,warnings
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
@@ -17,6 +16,8 @@ logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action='ignore', category=FutureWarning)
import LangSegment, os, re, sys, json
import pdb
import torch
@@ -25,20 +26,17 @@ try:
import gradio.analytics as analytics
analytics.version_check = lambda:None
except:...
version=model_version=os.environ.get("version","v2")
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "runtime/GPT_SoVITS/s2Gv3.pth"]
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "runtime/GPT_SoVITS/s1v3.ckpt"]
version=os.environ.get("version","v2")
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
_ =[[],[]]
for i in range(2):
if os.path.exists(pretrained_gpt_name[i]):
_[0].append(pretrained_gpt_name[i])
if os.path.exists(pretrained_sovits_name[i]):
_[-1].append(pretrained_sovits_name[i])
for i in range(3):
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name,pretrained_sovits_name = _
if os.path.exists(f"./weight.json"):
pass
@@ -83,7 +81,7 @@ from feature_extractor import cnhubert
cnhubert.cnhubert_base_path = cnhubert_base_path
from module.models import SynthesizerTrn
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
@@ -184,9 +182,17 @@ if is_half == True:
else:
ssl_model = ssl_model.to(device)
resample_transform_dict={}
def resample(audio_tensor, sr0):
global resample_transform_dict
if sr0 not in resample_transform_dict:
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
sr0, 24000
).to(device)
return resample_transform_dict[sr0](audio_tensor)
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
global vq_model, hps, version, dict_language
global vq_model, hps, version, model_version, dict_language
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
@@ -196,21 +202,41 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
else:
hps.model.version = "v2"
version = hps.model.version
if os.path.getsize(sovits_path)>700*1024*1024:
model_version="v3"
else:
model_version=version
'''
v1:about 82942KB
half thr:82978KB
v2:about 83014KB
v3:about 750MB
'''
# print("sovits版本:",hps.model.version)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if model_version!="v3":
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
else:
vq_model = SynthesizerTrnV3(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if ("pretrained" not in sovits_path):
del vq_model.enc_q
try:
del vq_model.enc_q
except:pass
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
with open("./weight.json")as f:
data=f.read()
@@ -228,13 +254,17 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
else:
text_update = {'__type__':'update', 'value':''}
text_language_update = {'__type__':'update', 'value':i18n("中文")}
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
if model_version=="v3":
visible_sample_steps=True
visible_inp_refs=False
else:
visible_sample_steps=False
visible_inp_refs=True
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs}
change_sovits_weights(sovits_path)
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
@@ -247,8 +277,8 @@ def change_gpt_weights(gpt_path):
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
# total = sum([param.nelement() for param in t2s_model.parameters()])
# print("Number of parameter: %.2fM" % (total / 1e6))
with open("./weight.json")as f:
data=f.read()
data=json.loads(data)
@@ -257,6 +287,25 @@ def change_gpt_weights(gpt_path):
change_gpt_weights(gpt_path)
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import torch,soundfile
now_dir = os.getcwd()
import soundfile
def init_bigvgan():
global model
from BigVGAN import bigvgan
model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) # if True, RuntimeError: Ninja is required to load C++ extensions
# remove weight norm in the model and set to eval mode
model.remove_weight_norm()
model = model.eval()
if is_half == True:
model = model.half().to(device)
else:
model = model.to(device)
if model_version!="v3":model=None
else:init_bigvgan()
def get_spepc(hps, filename):
@@ -376,6 +425,30 @@ def get_phones_and_bert(text,language,version,final=False):
return phones,bert.to(dtype),norm_text
from module.mel_processing import spectrogram_torch,spec_to_mel_torch
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center)
mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax)
return mel
mel_fn_args = {
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 100,
"sampling_rate": 24000,
"fmin": 0,
"fmax": None,
"center": False
}
spec_min = -12
spec_max = 2
def norm_spec(x):
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args)
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
@@ -397,8 +470,7 @@ def merge_short_text_in_array(texts, threshold):
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache= {}
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free
=False,speed=1,if_freeze=False,inp_refs=None):
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=None,sample_steps=8):
global cache
if ref_wav_path:pass
else:gr.Warning(i18n('请上传参考音频'))
@@ -468,6 +540,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
texts = process_text(texts)
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
###s2v3暂不支持ref_free
if not ref_free:
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
@@ -509,18 +582,60 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
cache[i_text]=pred_semantic
t3 = ttime()
refers=[]
if(inp_refs):
for path in inp_refs:
try:
refer = get_spepc(hps, path.name).to(dtype).to(device)
refers.append(refer)
except:
traceback.print_exc()
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
###v3不存在以下逻辑和inp_refs
if model_version!="v3":
refers=[]
if(inp_refs):
for path in inp_refs:
try:
refer = get_spepc(hps, path.name).to(dtype).to(device)
refers.append(refer)
except:
traceback.print_exc()
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
else:
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的没有单独的32k的src所以不能改成2个路径
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
ref_audio, sr = torchaudio.load(ref_wav_path)
ref_audio=ref_audio.to(device).float()
if (ref_audio.shape[0] == 2):
ref_audio = ref_audio.mean(0).unsqueeze(0)
if sr!=24000:
ref_audio=resample(ref_audio,sr)
mel2 = mel_fn(ref_audio.to(dtype))
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
if (T_min > 468):
mel2 = mel2[:, :, -468:]
fea_ref = fea_ref[:, :, -468:]
T_min = 468
chunk_len = 934 - T_min
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
cfm_resss = []
idx = 0
while (1):
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
if (fea_todo_chunk.shape[-1] == 0): break
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
cfm_res = cfm_res[:, :, mel2.shape[2]:]
mel2 = cfm_res[:, :, -468:]
fea_ref = fea_todo_chunk[:, :, -468:]
cfm_resss.append(cfm_res)
cmf_res = torch.cat(cfm_resss, 2)
cmf_res = denorm_spec(cmf_res)
if model==None:init_bigvgan()
with torch.inference_mode():
wav_gen = model(cmf_res)
audio=wav_gen[0][0].cpu().detach().numpy()
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
@@ -529,9 +644,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
print("%.3f\t%.3f\t%.3f\t%.3f" %
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
)
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
sr=hps.data.sampling_rate if model_version!="v3"else 24000
yield sr, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
def split(todo_text):
@@ -655,8 +769,8 @@ def change_choices():
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
GPT_weight_root=["GPT_weights_v2","GPT_weights"]
SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"]
GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"]
for path in SoVITS_weight_root+GPT_weight_root:
os.makedirs(path,exist_ok=True)
@@ -708,7 +822,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"),
)
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple")
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple")if model_version!="v3"else gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple",visible=False)
sample_steps = gr.Radio(label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),value=32,choices=[4,8,16,32],visible=True)if model_version=="v3"else gr.Radio(label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),value=8,choices=[4,8,16,32],visible=False)
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
with gr.Row():
with gr.Column(scale=13):
@@ -740,10 +855,10 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
inference_button.click(
get_tts_wav,
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs],
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs,sample_steps],
[output],
)
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language])
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language,sample_steps,inp_refs])
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))