support sovits v3 lora training, 8G GPU memory is enough

support sovits v3 lora training, 8G GPU memory is enough
This commit is contained in:
RVC-Boss
2025-02-23 00:37:14 +08:00
committed by GitHub
parent 56509a17c9
commit e937b625e4
4 changed files with 488 additions and 55 deletions

View File

@@ -28,10 +28,13 @@ try:
analytics.version_check = lambda:None
except:...
version=model_version=os.environ.get("version","v2")
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth","GPT_SoVITS/pretrained_models/s2Gv3.pth"]
path_sovits_v3="GPT_SoVITS/pretrained_models/s2Gv3.pth"
is_exist_s2gv3=os.path.exists(path_sovits_v3)
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",path_sovits_v3]
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
_ =[[],[]]
for i in range(3):
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
@@ -73,6 +76,7 @@ is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
# is_half=False
punctuation = set(['!', '?', '', ',', '.', '-'," "])
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
@@ -83,13 +87,26 @@ from feature_extractor import cnhubert
cnhubert.cnhubert_base_path = cnhubert_base_path
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
import numpy as np
import random
def set_seed(seed):
if seed == -1:
seed = random.randint(0, 1000000)
seed = int(seed)
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# set_seed(42)
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
from tools.i18n.i18n import I18nAuto, scan_language_list
from peft import LoraConfig, PeftModel, get_peft_model
language=os.environ.get("language","Auto")
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
@@ -192,38 +209,17 @@ def resample(audio_tensor, sr0):
).to(device)
return resample_transform_dict[sr0](audio_tensor)
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
#symbol_version-model_version-if_lora_v3
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
global vq_model, hps, version, model_version, dict_language
'''
v1:about 82942KB
half thr:82978KB
v2:about 83014KB
half thr:100MB
v1base:103490KB
half thr:103520KB
v2base:103551KB
v3:about 750MB
~82978K~100M~103420~700M
v1-v2-v1base-v2base-v3
version:
symbols version and timebre_embedding version
model_version:
sovits is v1/2 (VITS) or v3 (shortcut CFM DiT)
'''
size=os.path.getsize(sovits_path)
if size<82978*1024:
model_version=version="v1"
elif size<100*1024*1024:
model_version=version="v2"
elif size<103520*1024:
model_version=version="v1"
elif size<700*1024*1024:
model_version = version = "v2"
else:
version = "v2"
model_version="v3"
global vq_model, hps, version, model_version, dict_language,if_lora_v3
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
# print(sovits_path,version, model_version, if_lora_v3)
if if_lora_v3==True and is_exist_s2gv3==False:
info=i18n("GPT_SoVITS/pretrained_models/s2Gv3.pth v3sovits的底模没下载对识别为v3sovits的lora没法加载")
gr.Warning(info)
raise FileExistsError(info)
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
if prompt_language is not None and text_language is not None:
if prompt_language in list(dict_language.keys()):
@@ -244,11 +240,13 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
visible_inp_refs=True
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False}
dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False)
dict_s2 = load_sovits_new(sovits_path)
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
if 'enc_p.text_embedding.weight'not in dict_s2['weight']:
hps.model.version = "v2"#v3model,v2sybomls
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
@@ -278,7 +276,23 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
else:
vq_model = vq_model.to(device)
vq_model.eval()
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
if if_lora_v3==False:
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
else:
print("loading sovits_v3pretrained_G", vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False))
lora_rank=dict_s2["lora_rank"]
lora_config = LoraConfig(
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights=True,
)
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
print("loading sovits_v3_lora%s"%(lora_rank),vq_model.load_state_dict(dict_s2["weight"], strict=False))
vq_model.cfm = vq_model.cfm.merge_and_unload()
# torch.save(vq_model.state_dict(),"merge_win.pth")
vq_model.eval()
with open("./weight.json")as f:
data=f.read()
data=json.loads(data)
@@ -333,7 +347,8 @@ else:init_bigvgan()
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
# audio = load_audio(filename, int(hps.data.sampling_rate))
audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
maxx=audio.abs().max()
if(maxx>1):audio/=min(2,maxx)
@@ -443,11 +458,7 @@ def get_phones_and_bert(text,language,version,final=False):
return phones,bert.to(dtype),norm_text
from module.mel_processing import spectrogram_torch,spec_to_mel_torch
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center)
mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax)
return mel
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
mel_fn_args = {
"n_fft": 1024,
"win_size": 1024,
@@ -465,7 +476,7 @@ def norm_spec(x):
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args)
mel_fn=lambda x: mel_spectrogram_torch(x, **mel_fn_args)
def merge_short_text_in_array(texts, threshold):
@@ -617,6 +628,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的没有单独的32k的src所以不能改成2个路径
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
# print(11111111, phoneme_ids0, phoneme_ids1)
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
ref_audio, sr = torchaudio.load(ref_wav_path)
ref_audio=ref_audio.to(device).float()
@@ -624,7 +636,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
ref_audio = ref_audio.mean(0).unsqueeze(0)
if sr!=24000:
ref_audio=resample(ref_audio,sr)
mel2 = mel_fn(ref_audio.to(dtype))
# print("ref_audio",ref_audio.abs().mean())
mel2 = mel_fn(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
@@ -634,7 +647,12 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
fea_ref = fea_ref[:, :, -468:]
T_min = 468
chunk_len = 934 - T_min
# print("fea_ref",fea_ref,fea_ref.shape)
# print("mel2",mel2)
mel2=mel2.to(dtype)
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
# print("fea_todo",fea_todo)
# print("ge",ge.abs().mean())
cfm_resss = []
idx = 0
while (1):
@@ -642,9 +660,12 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
if (fea_todo_chunk.shape[-1] == 0): break
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
# set_seed(123)
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
cfm_res = cfm_res[:, :, mel2.shape[2]:]
mel2 = cfm_res[:, :, -T_min:]
# print("fea", fea)
# print("mel2in", mel2)
fea_ref = fea_todo_chunk[:, :, -T_min:]
cfm_resss.append(cfm_res)
cmf_res = torch.cat(cfm_resss, 2)
@@ -653,8 +674,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
with torch.inference_mode():
wav_gen = model(cmf_res)
audio=wav_gen[0][0].cpu().detach().numpy()
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()