修改Dockerfile,使其直接利用最新的requirements.txt安装Python包;并在构建过程中预先下载moda ASR和nltk相关的模型到镜像中以便加快初次运行的速度

This commit is contained in:
Kenn Zhang
2024-01-27 15:15:08 +08:00
parent f9387e0af8
commit d86ffa2386
6 changed files with 22 additions and 21 deletions

View File

@@ -2,7 +2,7 @@
FROM cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04
LABEL maintainer="breakstring@hotmail.com"
LABEL version="dev-20240123.03"
LABEL version="dev-20240127.f9387e0"
LABEL description="Docker image for GPT-SoVITS"
@@ -18,27 +18,19 @@ RUN apt-get update && \
WORKDIR /workspace
COPY . /workspace
# install python packages
RUN pip install -r requirements.txt
# Download models
RUN chmod +x /workspace/Docker/download.sh && /workspace/Docker/download.sh
# 本应该从 requirements.txt 里面安装package但是由于funasr和modelscope的问题暂时先在后面手工安装依赖包吧
RUN pip install --no-cache-dir torch numpy scipy tensorboard librosa==0.9.2 numba==0.56.4 pytorch-lightning gradio==3.14.0 ffmpeg-python onnxruntime tqdm cn2an pypinyin pyopenjtalk g2p_en chardet transformers jieba psutil PyYAML
# 这里强制指定了modelscope和funasr的版本后面damo_asr的模型让它们自己下载
RUN pip install --no-cache-dir modelscope~=1.10.0 torchaudio sentencepiece funasr~=0.8.7
# Download moda ASR related
RUN python /workspace/Docker/download.py
# 先屏蔽掉,让容器里自己下载
# Clone damo_asr
#WORKDIR /workspace/tools/damo_asr/models
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && \
# (cd speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && git lfs pull)
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch.git speech_fsmn_vad_zh-cn-16k-common-pytorch && \
# (cd speech_fsmn_vad_zh-cn-16k-common-pytorch && git lfs pull)
#RUN git clone --depth 1 https://www.modelscope.cn/iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git punc_ct-transformer_zh-cn-common-vocab272727-pytorch && \
# (cd punc_ct-transformer_zh-cn-common-vocab272727-pytorch && git lfs pull)
# Download nltk realted
RUN python -m nltk.downloader averaged_perceptron_tagger
RUN python -m nltk.downloader cmudict
#RUN parallel --will-cite -a /workspace/Docker/damo.sha256 "echo -n {} | sha256sum -c"
#WORKDIR /workspace
EXPOSE 9870
EXPOSE 9871