Introduce Docker and Windows CI Workflow, Pre-commit Formatting, and Language Resource Auto-Download (#2351)
* Docker Auto-Build Workflow * Rename * Update * Fix Bugs * Disable Progress Bar When workflows triggered * Fix Wget * Fix Bugs * Fix Bugs * Update Wget * Update Workflows * Accelerate Docker Image Building * Fix Install.sh * Add Skip-Check For Action Runner * Fix Dockerfile * . * . * . * . * Delete File in Runner * Add Sort * Delete More Files * Delete More * . * . * . * Add Pre-Commit Hook Update Docker * Add Code Spell Check * [pre-commit.ci] trigger * [pre-commit.ci] trigger * [pre-commit.ci] trigger * Fix Bugs * . * Disable Progress Bar and Logs while using GitHub Actions * . * . * Fix Bugs * update conda * fix bugs * Fix Bugs * fix bugs * . * . * Quiet Installation * fix bugs * . * fix bug * . * Fix pre-commit.ci and Docker * fix bugs * . * Update Docker & Pre-Commit * fix bugs * Update Req * Update Req * Update OpenCC * update precommit * . * Update .pre-commit-config.yaml * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update Docs and fix bugs * Fix \ * Fix MacOS * . * test * . * Add Tag Alias * . * fix bugs * fix bugs * make image smaller * update pre-commit config * . * . * fix bugs * use miniconda * Fix Wrong Path * . * debug * debug * revert * Fix Bugs * Update Docs, Add Dict Auto Download in install.sh * update docker_build * Update Docs for Install.sh * update docker docs about architecture * Add Xcode-Commandline-Tool Installation * Update Docs 1. Add Missing VC17 2. Modufied the Order of FFmpeg Installation and Requirements Installation 3. Remove Duplicate FFmpeg * Fix Wrong Cuda Version * Update TESTED ENV * Add PYTHONNOUSERSITE(-s) * Fix Wrapper * Update install.sh For Robustness * Ignore .git * Preload CUDNN For Ctranslate2 * Remove Gradio Warnings * Update Colab * Fix OpenCC Problems * Update Win DLL Strategy * Fix Onnxruntime-gpu NVRTC Error * Fix Path Problems * Add Windows Packages Workflow * WIP * WIP * WIP * WIP * WIP * WIP * . * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * WIP * Fix Path * Fix Path * Enable Logging * Set 7-Zip compression level to maximum (-mx=9) * Use Multithread in ONNX Session * Fix Tag Bugs * Add Time * Add Time * Add Time * Compress More * Copy DLL to Solve VC Runtime DLL Missing Issues * Expose FFmpeg Errors, Copy Only Part of Visual C++ Runtime * Update build_windows_packages.ps1 * Update build_windows_packages.ps1 * Update build_windows_packages.ps1 * Update build_windows_packages.ps1 * WIP * WIP * WIP * Update build_windows_packages.ps1 * Update install.sh * Update build_windows_packages.ps1 * Update docker-publish.yaml * Update install.sh * Update Dockerfile * Update docker_build.sh * Update miniconda_install.sh * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update Colab-WebUI.ipynb * Update Colab-Inference.ipynb * Update docker-compose.yaml * 更新 build_windows_packages.ps1 * Update install.sh --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
132
README.md
132
README.md
@@ -44,15 +44,15 @@ For users in China, you can [click here](https://www.codewithgpu.com/i/RVC-Boss/
|
||||
|
||||
### Tested Environments
|
||||
|
||||
| Python Version | PyTorch Version | Device |
|
||||
|----------------|------------------|-----------------|
|
||||
| Python 3.9 | PyTorch 2.0.1 | CUDA 11.8 |
|
||||
| Python 3.10.13 | PyTorch 2.1.2 | CUDA 12.3 |
|
||||
| Python 3.10.17 | PyTorch 2.5.1 | CUDA 12.4 |
|
||||
| Python 3.9 | PyTorch 2.5.1 | Apple silicon |
|
||||
| Python 3.11 | PyTorch 2.6.0 | Apple silicon |
|
||||
| Python 3.9 | PyTorch 2.2.2 | CPU |
|
||||
| Python 3.9 | PyTorch 2.8.0dev | CUDA12.8(for Nvidia50x0) |
|
||||
| Python Version | PyTorch Version | Device |
|
||||
| -------------- | ---------------- | ------------- |
|
||||
| Python 3.10 | PyTorch 2.5.1 | CUDA 12.4 |
|
||||
| Python 3.11 | PyTorch 2.5.1 | CUDA 12.4 |
|
||||
| Python 3.11 | PyTorch 2.7.0 | CUDA 12.8 |
|
||||
| Python 3.9 | PyTorch 2.8.0dev | CUDA 12.8 |
|
||||
| Python 3.9 | PyTorch 2.5.1 | Apple silicon |
|
||||
| Python 3.11 | PyTorch 2.7.0 | Apple silicon |
|
||||
| Python 3.9 | PyTorch 2.2.2 | CPU |
|
||||
|
||||
### Windows
|
||||
|
||||
@@ -63,31 +63,41 @@ If you are a Windows user (tested with win>=10), you can [download the integrate
|
||||
### Linux
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda create -n GPTSoVits python=3.10
|
||||
conda activate GPTSoVits
|
||||
bash install.sh --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
|
||||
bash install.sh --device <CU126|CU128|ROCM|CPU> --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
|
||||
```
|
||||
|
||||
### macOS
|
||||
|
||||
**Note: The models trained with GPUs on Macs result in significantly lower quality compared to those trained on other devices, so we are temporarily using CPUs instead.**
|
||||
|
||||
1. Install Xcode command-line tools by running `xcode-select --install`.
|
||||
2. Install the program by running the following commands:
|
||||
Install the program by running the following commands:
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda create -n GPTSoVits python=3.10
|
||||
conda activate GPTSoVits
|
||||
bash install.sh --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
|
||||
bash install.sh --device <MPS|CPU> --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
|
||||
```
|
||||
|
||||
### Install Manually
|
||||
|
||||
#### Install Dependences
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.10
|
||||
conda activate GPTSoVits
|
||||
|
||||
pip install -r extra-req.txt --no-deps
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
#### Install FFmpeg
|
||||
|
||||
##### Conda Users
|
||||
|
||||
```bash
|
||||
conda activate GPTSoVits
|
||||
conda install ffmpeg
|
||||
```
|
||||
|
||||
@@ -96,14 +106,13 @@ conda install ffmpeg
|
||||
```bash
|
||||
sudo apt install ffmpeg
|
||||
sudo apt install libsox-dev
|
||||
conda install -c conda-forge 'ffmpeg<7'
|
||||
```
|
||||
|
||||
##### Windows Users
|
||||
|
||||
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
|
||||
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root
|
||||
|
||||
Install [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) (Korean TTS Only)
|
||||
Install [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe)
|
||||
|
||||
##### MacOS Users
|
||||
|
||||
@@ -111,36 +120,53 @@ Install [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) (Ko
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
#### Install Dependences
|
||||
### Running GPT-SoVITS with Docker
|
||||
|
||||
#### Docker Image Selection
|
||||
|
||||
Due to rapid development in the codebase and a slower Docker image release cycle, please:
|
||||
|
||||
- Check [Docker Hub](https://hub.docker.com/r/xxxxrt666/gpt-sovits) for the latest available image tags
|
||||
- Choose an appropriate image tag for your environment
|
||||
- `Lite` means the Docker image does not include ASR models and UVR5 models. You can manually download the UVR5 models, while the program will automatically download the ASR models as needed
|
||||
- The appropriate architecture image (amd64/arm64) will be automatically pulled during Docker Compose
|
||||
- Optionally, build the image locally using the provided Dockerfile for the most up-to-date changes
|
||||
|
||||
#### Environment Variables
|
||||
|
||||
- `is_half`: Controls whether half-precision (fp16) is enabled. Set to `true` if your GPU supports it to reduce memory usage.
|
||||
|
||||
#### Shared Memory Configuration
|
||||
|
||||
On Windows (Docker Desktop), the default shared memory size is small and may cause unexpected behavior. Increase `shm_size` (e.g., to `16g`) in your Docker Compose file based on your available system memory.
|
||||
|
||||
#### Choosing a Service
|
||||
|
||||
The `docker-compose.yaml` defines two services:
|
||||
|
||||
- `GPT-SoVITS-CU126` & `GPT-SoVITS-CU128`: Full version with all features.
|
||||
- `GPT-SoVITS-CU126-Lite` & `GPT-SoVITS-CU128-Lite`: Lightweight version with reduced dependencies and functionality.
|
||||
|
||||
To run a specific service with Docker Compose, use:
|
||||
|
||||
```bash
|
||||
pip install -r extra-req.txt --no-deps
|
||||
pip install -r requirements.txt
|
||||
docker compose run --service-ports <GPT-SoVITS-CU126-Lite|GPT-SoVITS-CU128-Lite|GPT-SoVITS-CU126|GPT-SoVITS-CU128>
|
||||
```
|
||||
|
||||
### Using Docker
|
||||
#### Building the Docker Image Locally
|
||||
|
||||
#### docker-compose.yaml configuration
|
||||
If you want to build the image yourself, use:
|
||||
|
||||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits)(outdated) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||||
1. Environment Variables:
|
||||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||||
2. Volumes Configuration, The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
|
||||
3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
|
||||
4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
|
||||
|
||||
#### Running with docker compose
|
||||
|
||||
```
|
||||
docker compose -f "docker-compose.yaml" up -d
|
||||
```bash
|
||||
bash docker_build.sh --cuda <12.6|12.8> [--lite]
|
||||
```
|
||||
|
||||
#### Running with docker command
|
||||
#### Accessing the Running Container (Bash Shell)
|
||||
|
||||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||||
Once the container is running in the background, you can access it using:
|
||||
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```bash
|
||||
docker exec -it <GPT-SoVITS-CU126-Lite|GPT-SoVITS-CU128-Lite|GPT-SoVITS-CU126|GPT-SoVITS-CU128> bash
|
||||
```
|
||||
|
||||
## Pretrained Models
|
||||
@@ -168,7 +194,9 @@ docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-Docker
|
||||
The TTS annotation .list file format:
|
||||
|
||||
```
|
||||
|
||||
vocal_path|speaker_name|language|text
|
||||
|
||||
```
|
||||
|
||||
Language dictionary:
|
||||
@@ -182,7 +210,9 @@ Language dictionary:
|
||||
Example:
|
||||
|
||||
```
|
||||
|
||||
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
|
||||
|
||||
```
|
||||
|
||||
## Finetune and inference
|
||||
@@ -212,12 +242,12 @@ Or maunally switch version in WebUI
|
||||
|
||||
#### Path Auto-filling is now supported
|
||||
|
||||
1. Fill in the audio path
|
||||
2. Slice the audio into small chunks
|
||||
3. Denoise(optinal)
|
||||
4. ASR
|
||||
5. Proofreading ASR transcriptions
|
||||
6. Go to the next Tab, then finetune the model
|
||||
1. Fill in the audio path
|
||||
2. Slice the audio into small chunks
|
||||
3. Denoise(optinal)
|
||||
4. ASR
|
||||
5. Proofreading ASR transcriptions
|
||||
6. Go to the next Tab, then finetune the model
|
||||
|
||||
### Open Inference WebUI
|
||||
|
||||
@@ -259,7 +289,7 @@ Use v2 from v1 environment:
|
||||
|
||||
2. Clone the latest codes from github.
|
||||
|
||||
3. Download v2 pretrained models from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) and put them into `GPT_SoVITS\pretrained_models\gsv-v2final-pretrained`.
|
||||
3. Download v2 pretrained models from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) and put them into `GPT_SoVITS/pretrained_models/gsv-v2final-pretrained`.
|
||||
|
||||
Chinese v2 additional: [G2PWModel.zip(HF)](https://huggingface.co/XXXXRT/GPT-SoVITS-Pretrained/resolve/main/G2PWModel.zip)| [G2PWModel.zip(ModelScope)](https://www.modelscope.cn/models/XXXXRT/GPT-SoVITS-Pretrained/resolve/master/G2PWModel.zip)(Download G2PW models, unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS/text`.)
|
||||
|
||||
@@ -279,7 +309,7 @@ Use v3 from v2 environment:
|
||||
|
||||
2. Clone the latest codes from github.
|
||||
|
||||
3. Download v3 pretrained models (s1v3.ckpt, s2Gv3.pth and models--nvidia--bigvgan_v2_24khz_100band_256x folder) from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) and put them into `GPT_SoVITS\pretrained_models`.
|
||||
3. Download v3 pretrained models (s1v3.ckpt, s2Gv3.pth and models--nvidia--bigvgan_v2_24khz_100band_256x folder) from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) and put them into `GPT_SoVITS/pretrained_models`.
|
||||
|
||||
additional: for Audio Super Resolution model, you can read [how to download](./tools/AP_BWE_main/24kto48k/readme.txt)
|
||||
|
||||
@@ -296,7 +326,7 @@ Use v4 from v1/v2/v3 environment:
|
||||
|
||||
2. Clone the latest codes from github.
|
||||
|
||||
3. Download v4 pretrained models (gsv-v4-pretrained/s2v4.ckpt, and gsv-v4-pretrained/vocoder.pth) from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) and put them into `GPT_SoVITS\pretrained_models`.
|
||||
3. Download v4 pretrained models (gsv-v4-pretrained/s2v4.ckpt, and gsv-v4-pretrained/vocoder.pth) from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) and put them into `GPT_SoVITS/pretrained_models`.
|
||||
|
||||
## Todo List
|
||||
|
||||
@@ -322,7 +352,7 @@ Use v4 from v1/v2/v3 environment:
|
||||
|
||||
Use the command line to open the WebUI for UVR5
|
||||
|
||||
```
|
||||
```bash
|
||||
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
|
||||
```
|
||||
|
||||
@@ -333,7 +363,7 @@ python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --
|
||||
|
||||
This is how the audio segmentation of the dataset is done using the command line
|
||||
|
||||
```
|
||||
```bash
|
||||
python audio_slicer.py \
|
||||
--input_path "<path_to_original_audio_file_or_directory>" \
|
||||
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
|
||||
@@ -345,7 +375,7 @@ python audio_slicer.py \
|
||||
|
||||
This is how dataset ASR processing is done using the command line(Only Chinese)
|
||||
|
||||
```
|
||||
```bash
|
||||
python tools/asr/funasr_asr.py -i <input> -o <output>
|
||||
```
|
||||
|
||||
@@ -353,7 +383,7 @@ ASR processing is performed through Faster_Whisper(ASR marking except Chinese)
|
||||
|
||||
(No progress bars, GPU performance may cause time delays)
|
||||
|
||||
```
|
||||
```bash
|
||||
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user