gpt_sovits_v3
gpt_sovits_v3
This commit is contained in:
89
GPT_SoVITS/BigVGAN/inference.py
Normal file
89
GPT_SoVITS/BigVGAN/inference.py
Normal file
@@ -0,0 +1,89 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import json
|
||||
import torch
|
||||
import librosa
|
||||
from utils import load_checkpoint
|
||||
from meldataset import get_mel_spectrogram
|
||||
from scipy.io.wavfile import write
|
||||
from env import AttrDict
|
||||
from meldataset import MAX_WAV_VALUE
|
||||
from bigvgan import BigVGAN as Generator
|
||||
|
||||
h = None
|
||||
device = None
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
def inference(a, h):
|
||||
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
||||
|
||||
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
||||
generator.load_state_dict(state_dict_g["generator"])
|
||||
|
||||
filelist = os.listdir(a.input_wavs_dir)
|
||||
|
||||
os.makedirs(a.output_dir, exist_ok=True)
|
||||
|
||||
generator.eval()
|
||||
generator.remove_weight_norm()
|
||||
with torch.no_grad():
|
||||
for i, filname in enumerate(filelist):
|
||||
# Load the ground truth audio and resample if necessary
|
||||
wav, sr = librosa.load(
|
||||
os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True
|
||||
)
|
||||
wav = torch.FloatTensor(wav).to(device)
|
||||
# Compute mel spectrogram from the ground truth audio
|
||||
x = get_mel_spectrogram(wav.unsqueeze(0), generator.h)
|
||||
|
||||
y_g_hat = generator(x)
|
||||
|
||||
audio = y_g_hat.squeeze()
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
|
||||
output_file = os.path.join(
|
||||
a.output_dir, os.path.splitext(filname)[0] + "_generated.wav"
|
||||
)
|
||||
write(output_file, h.sampling_rate, audio)
|
||||
print(output_file)
|
||||
|
||||
|
||||
def main():
|
||||
print("Initializing Inference Process..")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input_wavs_dir", default="test_files")
|
||||
parser.add_argument("--output_dir", default="generated_files")
|
||||
parser.add_argument("--checkpoint_file", required=True)
|
||||
parser.add_argument("--use_cuda_kernel", action="store_true", default=False)
|
||||
|
||||
a = parser.parse_args()
|
||||
|
||||
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json")
|
||||
with open(config_file) as f:
|
||||
data = f.read()
|
||||
|
||||
global h
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
|
||||
torch.manual_seed(h.seed)
|
||||
global device
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
device = torch.device("cuda")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
inference(a, h)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user