改变训练和推理时的mask策略,以修复当batch_size>1时,产生的复读现象 (#966)

This commit is contained in:
ChasonJiang
2024-04-12 18:00:50 +08:00
committed by GitHub
parent 3706ad1b8b
commit 959269b5ae
2 changed files with 48 additions and 44 deletions

View File

@@ -515,16 +515,16 @@ class TTS:
all_bert_features_batch = all_bert_features_list
# max_len = max(bert_max_len, phones_max_len)
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad,会增大复读概率。
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
# all_bert_features_batch = all_bert_features_list
# all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device)
# for idx, item in enumerate(all_bert_features_list):
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
#### 直接对phones和bert_features进行padpadding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device)
for idx, item in enumerate(all_bert_features_list):
all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度以缓解复读问题。(可能还有其他因素导致复读
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
# all_phones_batch = torch.stack(all_phones_list, dim=0)
@@ -734,17 +734,18 @@ class TTS:
continue
batch_phones:List[torch.LongTensor] = item["phones"]
# batch_phones:torch.LongTensor = item["phones"]
batch_phones_len:torch.LongTensor = item["phones_len"]
all_phoneme_ids:List[torch.LongTensor] = item["all_phones"]
all_phoneme_ids:torch.LongTensor = item["all_phones"]
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
all_bert_features:List[torch.LongTensor] = item["all_bert_features"]
all_bert_features:torch.LongTensor = item["all_bert_features"]
norm_text:str = item["norm_text"]
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text :
prompt = None
else:
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(self.configs.device)
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(