缓解了batch_size>1时的复读问题,缓解方法是:在T2S模型中,先对phones进行embedding、对bert_features进行project,再pad到相同长度。
This commit is contained in:
@@ -504,18 +504,29 @@ class Text2SemanticDecoder(nn.Module):
|
||||
|
||||
def infer_panel_batch_infer_with_flash_attn(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
x:List[torch.LongTensor], #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
|
||||
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_embedding(x)
|
||||
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
max_len = 0
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_list = [self.ar_text_embedding(item) for item in x]
|
||||
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||
x = torch.stack(x_list, dim=0)
|
||||
|
||||
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||
|
||||
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||
# x = self.ar_text_embedding(x)
|
||||
x = x + bert_feature
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
@@ -658,17 +669,30 @@ class Text2SemanticDecoder(nn.Module):
|
||||
|
||||
def infer_panel_batch_only(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
x:List[torch.LongTensor], #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
max_len = 0
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_list = [self.ar_text_embedding(item) for item in x]
|
||||
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||
x = torch.stack(x_list, dim=0)
|
||||
|
||||
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||
|
||||
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||
# x = self.ar_text_embedding(x)
|
||||
x = x + bert_feature
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
|
||||
Reference in New Issue
Block a user