* chores

* ...

* Add files via upload

* ...

* remove gradio warnings

* Update inference_webui.py

Fix inference_cli issue
This commit is contained in:
XXXXRT666
2024-08-23 17:47:27 +08:00
committed by GitHub
parent 2a9512a63e
commit 7dac47ca95
7 changed files with 34 additions and 6 deletions

View File

@@ -182,6 +182,11 @@ class TTS_Config:
def _load_configs(self, configs_path: str)->dict:
if os.path.exists(configs_path):
...
else:
print(i18n("路径不存在,使用默认配置"))
self.save_configs(configs_path)
with open(configs_path, 'r') as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
@@ -748,7 +753,8 @@ class TTS:
phones, bert_features, norm_text = \
self.text_preprocessor.segment_and_extract_feature_for_text(
prompt_text,
prompt_lang)
prompt_lang,
self.configs.version)
self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text
@@ -760,7 +766,7 @@ class TTS:
t1 = ttime()
data:list = None
if not return_fragment:
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
if len(data) == 0:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)

View File

@@ -55,9 +55,9 @@ class TextPreprocessor:
self.tokenizer = tokenizer
self.device = device
def preprocess(self, text:str, lang:str, text_split_method:str, version:str="v1")->List[Dict]:
def preprocess(self, text:str, lang:str, text_split_method:str, version:str="v2")->List[Dict]:
print(i18n("############ 切分文本 ############"))
text = self.replace_consecutive_punctuation(text) # 变量命名应该是写错了
text = self.replace_consecutive_punctuation(text)
texts = self.pre_seg_text(text, lang, text_split_method)
result = []
print(i18n("############ 提取文本Bert特征 ############"))
@@ -204,7 +204,7 @@ class TextPreprocessor:
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def clean_text_inf(self, text:str, language:str, version:str="v1"):
def clean_text_inf(self, text:str, language:str, version:str="v2"):
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text