Add AR Onnx Module
This commit is contained in:
committed by
GitHub
parent
bd68358c3f
commit
7d1e94c8b0
106
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py
Normal file
106
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py
Normal file
@@ -0,0 +1,106 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
||||
import os, sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import LightningModule
|
||||
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
||||
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(
|
||||
self.load_state_dict(
|
||||
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / "eval"
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
loss, acc = self.model.forward(
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
batch["semantic_ids"],
|
||||
batch["semantic_ids_len"],
|
||||
batch["bert_feature"],
|
||||
)
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
opt.zero_grad()
|
||||
scheduler.step()
|
||||
|
||||
self.log(
|
||||
"total_loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append(
|
||||
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
||||
)
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
betas=(0.9, 0.95),
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000,
|
||||
)
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler": WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config["optimizer"]["lr_init"],
|
||||
peak_lr=self.config["optimizer"]["lr"],
|
||||
end_lr=self.config["optimizer"]["lr_end"],
|
||||
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
||||
total_steps=self.config["optimizer"]["decay_steps"],
|
||||
)
|
||||
},
|
||||
}
|
||||
Reference in New Issue
Block a user