Fix dependency-related issues via requirements update (#2236)

* Update requirements.txt

* Create constraints.txt

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* pyopenjtalk and onnx fix

* Update requirements.txt

* Update requirements.txt

* Update install.sh

* update shell install.sh

* update docs

* Update Install.sh

* fix bugs

* Update .gitignore

* Update .gitignore

* Update install.sh

* Update install.sh

* Update extra-req.txt

* Update requirements.txt
This commit is contained in:
XXXXRT666
2025-03-31 04:27:12 +01:00
committed by GitHub
parent ee4a466f79
commit 6c468583c5
12 changed files with 527 additions and 200 deletions

View File

@@ -70,7 +70,7 @@ bash install.sh
```bash
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
pip install -r extra-req.txt --no-deps
pip install -r requirements.txt
```
@@ -99,6 +99,7 @@ conda install -c conda-forge 'ffmpeg<7'
[Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) 설치 (Korean TTS 전용)
##### MacOS 사용자
```bash
brew install ffmpeg
```
@@ -106,6 +107,7 @@ brew install ffmpeg
#### 의존성 설치
```bash
pip install -r extra-req.txt --no-deps
pip install -r requirements.txt
```
@@ -147,9 +149,9 @@ docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-Docker
3. UVR5 (보컬/반주 분리 & 잔향 제거 추가 기능)의 경우, [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) 에서 모델을 다운로드하고 `tools/uvr5/uvr5_weights` 디렉토리에 배치하세요.
- UVR5에서 bs_roformer 또는 mel_band_roformer 모델을 사용할 경우, 모델과 해당 설정 파일을 수동으로 다운로드하여 `tools/UVR5/UVR5_weights` 폴더에 저장할 수 있습니다. **모델 파일과 설정 파일의 이름은 확장자를 제외하고 동일한 이름을 가지도록 해야 합니다**. 또한, 모델과 설정 파일 이름에는 **“roformer”**가 포함되어야 roformer 클래스의 모델로 인식됩니다.
- UVR5에서 bs_roformer 또는 mel_band_roformer 모델을 사용할 경우, 모델과 해당 설정 파일을 수동으로 다운로드하여 `tools/UVR5/UVR5_weights` 폴더에 저장할 수 있습니다. **모델 파일과 설정 파일의 이름은 확장자를 제외하고 동일한 이름을 가지도록 해야 합니다**. 또한, 모델과 설정 파일 이름에는 **“roformer”**가 포함되어야 roformer 클래스의 모델로 인식됩니다.
- 모델 이름과 설정 파일 이름에 **모델 유형을 직접 지정하는 것이 좋습니다**. 예: mel_mand_roformer, bs_roformer. 지정하지 않으면 설정 파일을 기준으로 특성을 비교하여 어떤 유형의 모델인지를 판단합니다. 예를 들어, 모델 `bs_roformer_ep_368_sdr_12.9628.ckpt`와 해당 설정 파일 `bs_roformer_ep_368_sdr_12.9628.yaml`은 한 쌍입니다. `kim_mel_band_roformer.ckpt``kim_mel_band_roformer.yaml`도 한 쌍입니다.
- 모델 이름과 설정 파일 이름에 **모델 유형을 직접 지정하는 것이 좋습니다**. 예: mel_mand_roformer, bs_roformer. 지정하지 않으면 설정 파일을 기준으로 특성을 비교하여 어떤 유형의 모델인지를 판단합니다. 예를 들어, 모델 `bs_roformer_ep_368_sdr_12.9628.ckpt`와 해당 설정 파일 `bs_roformer_ep_368_sdr_12.9628.yaml`은 한 쌍입니다. `kim_mel_band_roformer.ckpt``kim_mel_band_roformer.yaml`도 한 쌍입니다.
4. 중국어 ASR (추가 기능)의 경우, [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files) 및 [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) 에서 모델을 다운로드하고, `tools/asr/models` 디렉토리에 배치하세요.
@@ -195,6 +197,7 @@ V1으로 전환하려면,
```bash
python webui.py v1 <언어(옵션)>
```
또는 WebUI에서 수동으로 버전을 전환하십시오.
### 미세 조정
@@ -219,11 +222,13 @@ python webui.py v1 <언어(옵션)>
```bash
python GPT_SoVITS/inference_webui.py <언어(옵션)>
```
또는
```bash
python webui.py
```
그런 다음 `1-GPT-SoVITS-TTS/1C-inference`에서 추론 webui를 엽니다.
## V2 릴리스 노트
@@ -238,7 +243,7 @@ python webui.py
4. 저품질 참조 오디오에 대한 합성 품질 향상
[자세한 내용](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7))
[자세한 내용](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
V1 환경에서 V2를 사용하려면:
@@ -248,7 +253,7 @@ V1 환경에서 V2를 사용하려면:
3. [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained)에서 V2 사전 학습 모델을 다운로드하여 `GPT_SoVITS\pretrained_models\gsv-v2final-pretrained`에 넣으십시오.
중국어 V2 추가: [G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip) (G2PW 모델을 다운로드하여 압축을 풀고 `G2PWModel`로 이름을 변경한 다음 `GPT_SoVITS/text`에 배치합니다.)
중국어 V2 추가: [G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip) (G2PW 모델을 다운로드하여 압축을 풀고 `G2PWModel`로 이름을 변경한 다음 `GPT_SoVITS/text`에 배치합니다.)
## V3 릴리스 노트
@@ -258,7 +263,7 @@ V1 환경에서 V2를 사용하려면:
2. GPT 모델이 더 안정적이며 반복 및 생략이 적고, 더 풍부한 감정 표현을 가진 음성을 생성하기가 더 쉽습니다.
[자세한 내용](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7))
[자세한 내용](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
v2 환경에서 v3 사용하기:
@@ -268,8 +273,7 @@ v2 환경에서 v3 사용하기:
3. v3 사전 훈련된 모델(s1v3.ckpt, s2Gv3.pth, 그리고 models--nvidia--bigvgan_v2_24khz_100band_256x 폴더)을 [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)에서 다운로드하여 `GPT_SoVITS\pretrained_models` 폴더에 넣습니다.
추가: 오디오 슈퍼 해상도 모델에 대해서는 [다운로드 방법](../../tools/AP_BWE_main/24kto48k/readme.txt)을 참고하세요.
추가: 오디오 슈퍼 해상도 모델에 대해서는 [다운로드 방법](../../tools/AP_BWE_main/24kto48k/readme.txt)을 참고하세요.
## 할 일 목록
@@ -293,15 +297,20 @@ v2 환경에서 v3 사용하기:
- [ ] 모델 블렌딩.
## (추가적인) 명령줄에서 실행하는 방법
명령줄을 사용하여 UVR5용 WebUI 열기
```
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
```
<!-- 브라우저를 열 수 없는 경우 UVR 처리를 위해 아래 형식을 따르십시오. 이는 오디오 처리를 위해 mdxnet을 사용하는 것입니다.
```
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
``` -->
명령줄을 사용하여 데이터세트의 오디오 분할을 수행하는 방법은 다음과 같습니다.
```
python audio_slicer.py \
--input_path "<path_to_original_audio_file_or_directory>" \
@@ -311,16 +320,21 @@ python audio_slicer.py \
--min_interval <shortest_time_gap_between_adjacent_subclips>
--hop_size <step_size_for_computing_volume_curve>
```
명령줄을 사용하여 데이터 세트 ASR 처리를 수행하는 방법입니다(중국어만 해당).
```
python tools/asr/funasr_asr.py -i <input> -o <output>
```
ASR 처리는 Faster_Whisper(중국어를 제외한 ASR 마킹)를 통해 수행됩니다.
(진행률 표시줄 없음, GPU 성능으로 인해 시간 지연이 발생할 수 있음)
```
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
```
사용자 정의 목록 저장 경로가 활성화되었습니다.
## 감사의 말
@@ -328,6 +342,7 @@ python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p
다음 프로젝트와 기여자들에게 특별히 감사드립니다:
### 이론 연구
- [ar-vits](https://github.com/innnky/ar-vits)
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
- [vits](https://github.com/jaywalnut310/vits)
@@ -337,17 +352,23 @@ python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
- [f5-TTS](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py)
- [shortcut flow matching](https://github.com/kvfrans/shortcut-models/blob/main/targets_shortcut.py)
### 사전 학습 모델
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
### 추론용 텍스트 프론트엔드
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
- [split-lang](https://github.com/DoodleBears/split-lang)
- [g2pW](https://github.com/GitYCC/g2pW)
- [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
- [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
### WebUI 도구
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [SubFix](https://github.com/cronrpc/SubFix)