Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -7,23 +7,22 @@ import torch.nn.functional as F
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
|
||||
class Attend(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dropout = 0.,
|
||||
flash = False,
|
||||
scale = None
|
||||
):
|
||||
def __init__(self, dropout=0.0, flash=False, scale=None):
|
||||
super().__init__()
|
||||
self.scale = scale
|
||||
self.dropout = dropout
|
||||
self.attn_dropout = nn.Dropout(dropout)
|
||||
|
||||
self.flash = flash
|
||||
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
||||
assert not (flash and version.parse(torch.__version__) < version.parse("2.0.0")), (
|
||||
"in order to use flash attention, you must be using pytorch 2.0 or above"
|
||||
)
|
||||
|
||||
def flash_attn(self, q, k, v):
|
||||
# _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
||||
@@ -34,7 +33,7 @@ class Attend(nn.Module):
|
||||
|
||||
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||||
return F.scaled_dot_product_attention(q, k, v,dropout_p = self.dropout if self.training else 0.)
|
||||
return F.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout if self.training else 0.0)
|
||||
|
||||
def forward(self, q, k, v):
|
||||
"""
|
||||
@@ -54,7 +53,7 @@ class Attend(nn.Module):
|
||||
|
||||
# similarity
|
||||
|
||||
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
|
||||
sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale
|
||||
|
||||
# attention
|
||||
|
||||
@@ -63,6 +62,6 @@ class Attend(nn.Module):
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
|
||||
out = einsum("b h i j, b h j d -> b h i d", attn, v)
|
||||
|
||||
return out
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum, Tensor
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
import torch.nn.functional as F
|
||||
|
||||
from bs_roformer.attend import Attend
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from typing import Tuple, Optional, List, Callable
|
||||
from typing import Tuple, Optional, Callable
|
||||
# from beartype.typing import Tuple, Optional, List, Callable
|
||||
# from beartype import beartype
|
||||
|
||||
@@ -19,6 +19,7 @@ from einops.layers.torch import Rearrange
|
||||
|
||||
# helper functions
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@@ -37,14 +38,15 @@ def unpack_one(t, ps, pattern):
|
||||
|
||||
# norm
|
||||
|
||||
|
||||
def l2norm(t):
|
||||
return F.normalize(t, dim = -1, p = 2)
|
||||
return F.normalize(t, dim=-1, p=2)
|
||||
|
||||
|
||||
class RMSNorm(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.scale = dim ** 0.5
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
@@ -53,13 +55,9 @@ class RMSNorm(Module):
|
||||
|
||||
# attention
|
||||
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
mult=4,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, dim, mult=4, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = int(dim * mult)
|
||||
self.net = nn.Sequential(
|
||||
@@ -68,7 +66,7 @@ class FeedForward(Module):
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_inner, dim),
|
||||
nn.Dropout(dropout)
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -76,18 +74,10 @@ class FeedForward(Module):
|
||||
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.,
|
||||
rotary_embed=None,
|
||||
flash=True
|
||||
):
|
||||
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0, rotary_embed=None, flash=True):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
dim_inner = heads * dim_head
|
||||
|
||||
self.rotary_embed = rotary_embed
|
||||
@@ -99,15 +89,12 @@ class Attention(Module):
|
||||
|
||||
self.to_gates = nn.Linear(dim, heads)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(dim_inner, dim, bias=False),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
self.to_out = nn.Sequential(nn.Linear(dim_inner, dim, bias=False), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
||||
q, k, v = rearrange(self.to_qkv(x), "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
|
||||
|
||||
if exists(self.rotary_embed):
|
||||
q = self.rotary_embed.rotate_queries_or_keys(q)
|
||||
@@ -116,9 +103,9 @@ class Attention(Module):
|
||||
out = self.attend(q, k, v)
|
||||
|
||||
gates = self.to_gates(x)
|
||||
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
||||
out = out * rearrange(gates, "b n h -> b h n 1").sigmoid()
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -128,42 +115,22 @@ class LinearAttention(Module):
|
||||
"""
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
dim_head=32,
|
||||
heads=8,
|
||||
scale=8,
|
||||
flash=False,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, *, dim, dim_head=32, heads=8, scale=8, flash=False, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = dim_head * heads
|
||||
self.norm = RMSNorm(dim)
|
||||
|
||||
self.to_qkv = nn.Sequential(
|
||||
nn.Linear(dim, dim_inner * 3, bias=False),
|
||||
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
||||
nn.Linear(dim, dim_inner * 3, bias=False), Rearrange("b n (qkv h d) -> qkv b h d n", qkv=3, h=heads)
|
||||
)
|
||||
|
||||
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
||||
|
||||
self.attend = Attend(
|
||||
scale=scale,
|
||||
dropout=dropout,
|
||||
flash=flash
|
||||
)
|
||||
self.attend = Attend(scale=scale, dropout=dropout, flash=flash)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
Rearrange('b h d n -> b n (h d)'),
|
||||
nn.Linear(dim_inner, dim, bias=False)
|
||||
)
|
||||
self.to_out = nn.Sequential(Rearrange("b h d n -> b n (h d)"), nn.Linear(dim_inner, dim, bias=False))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x
|
||||
):
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x)
|
||||
@@ -178,19 +145,19 @@ class LinearAttention(Module):
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = ModuleList([])
|
||||
@@ -199,18 +166,20 @@ class Transformer(Module):
|
||||
if linear_attn:
|
||||
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
||||
else:
|
||||
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed, flash=flash_attn)
|
||||
attn = Attention(
|
||||
dim=dim,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed,
|
||||
flash=flash_attn,
|
||||
)
|
||||
|
||||
self.layers.append(ModuleList([
|
||||
attn,
|
||||
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
||||
]))
|
||||
self.layers.append(ModuleList([attn, FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)]))
|
||||
|
||||
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
@@ -220,22 +189,16 @@ class Transformer(Module):
|
||||
|
||||
# bandsplit module
|
||||
|
||||
|
||||
class BandSplit(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...]
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...]):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_features = ModuleList([])
|
||||
|
||||
for dim_in in dim_inputs:
|
||||
net = nn.Sequential(
|
||||
RMSNorm(dim_in),
|
||||
nn.Linear(dim_in, dim)
|
||||
)
|
||||
net = nn.Sequential(RMSNorm(dim_in), nn.Linear(dim_in, dim))
|
||||
|
||||
self.to_features.append(net)
|
||||
|
||||
@@ -250,13 +213,7 @@ class BandSplit(Module):
|
||||
return torch.stack(outs, dim=-2)
|
||||
|
||||
|
||||
def MLP(
|
||||
dim_in,
|
||||
dim_out,
|
||||
dim_hidden=None,
|
||||
depth=1,
|
||||
activation=nn.Tanh
|
||||
):
|
||||
def MLP(dim_in, dim_out, dim_hidden=None, depth=1, activation=nn.Tanh):
|
||||
dim_hidden = default(dim_hidden, dim_in)
|
||||
|
||||
net = []
|
||||
@@ -277,13 +234,7 @@ def MLP(
|
||||
|
||||
class MaskEstimator(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...],
|
||||
depth,
|
||||
mlp_expansion_factor=4
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...], depth, mlp_expansion_factor=4):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_freqs = ModuleList([])
|
||||
@@ -292,10 +243,7 @@ class MaskEstimator(Module):
|
||||
for dim_in in dim_inputs:
|
||||
net = []
|
||||
|
||||
mlp = nn.Sequential(
|
||||
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
||||
nn.GLU(dim=-1)
|
||||
)
|
||||
mlp = nn.Sequential(MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), nn.GLU(dim=-1))
|
||||
|
||||
self.to_freqs.append(mlp)
|
||||
|
||||
@@ -314,53 +262,106 @@ class MaskEstimator(Module):
|
||||
# main class
|
||||
|
||||
DEFAULT_FREQS_PER_BANDS = (
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2,
|
||||
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
12, 12, 12, 12, 12, 12, 12, 12,
|
||||
24, 24, 24, 24, 24, 24, 24, 24,
|
||||
48, 48, 48, 48, 48, 48, 48, 48,
|
||||
128, 129,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
128,
|
||||
129,
|
||||
)
|
||||
|
||||
|
||||
class BSRoformer(Module):
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
||||
# in the paper, they divide into ~60 bands, test with 1 for starters
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=2,
|
||||
multi_stft_resolution_loss_weight=1.,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
||||
# in the paper, they divide into ~60 bands, test with 1 for starters
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=2,
|
||||
multi_stft_resolution_loss_weight=1.0,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -379,7 +380,7 @@ class BSRoformer(Module):
|
||||
attn_dropout=attn_dropout,
|
||||
ff_dropout=ff_dropout,
|
||||
flash_attn=flash_attn,
|
||||
norm_output=False
|
||||
norm_output=False,
|
||||
)
|
||||
|
||||
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
||||
@@ -400,26 +401,23 @@ class BSRoformer(Module):
|
||||
self.final_norm = RMSNorm(dim)
|
||||
|
||||
self.stft_kwargs = dict(
|
||||
n_fft=stft_n_fft,
|
||||
hop_length=stft_hop_length,
|
||||
win_length=stft_win_length,
|
||||
normalized=stft_normalized
|
||||
n_fft=stft_n_fft, hop_length=stft_hop_length, win_length=stft_win_length, normalized=stft_normalized
|
||||
)
|
||||
|
||||
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
||||
|
||||
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True).shape[1]
|
||||
freqs = torch.stft(
|
||||
torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True
|
||||
).shape[1]
|
||||
|
||||
assert len(freqs_per_bands) > 1
|
||||
assert sum(
|
||||
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
|
||||
assert sum(freqs_per_bands) == freqs, (
|
||||
f"the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}"
|
||||
)
|
||||
|
||||
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
|
||||
|
||||
self.band_split = BandSplit(
|
||||
dim=dim,
|
||||
dim_inputs=freqs_per_bands_with_complex
|
||||
)
|
||||
self.band_split = BandSplit(dim=dim, dim_inputs=freqs_per_bands_with_complex)
|
||||
|
||||
self.mask_estimators = nn.ModuleList([])
|
||||
|
||||
@@ -440,17 +438,9 @@ class BSRoformer(Module):
|
||||
self.multi_stft_n_fft = stft_n_fft
|
||||
self.multi_stft_window_fn = multi_stft_window_fn
|
||||
|
||||
self.multi_stft_kwargs = dict(
|
||||
hop_length=multi_stft_hop_size,
|
||||
normalized=multi_stft_normalized
|
||||
)
|
||||
self.multi_stft_kwargs = dict(hop_length=multi_stft_hop_size, normalized=multi_stft_normalized)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
raw_audio,
|
||||
target=None,
|
||||
return_loss_breakdown=False
|
||||
):
|
||||
def forward(self, raw_audio, target=None, return_loss_breakdown=False):
|
||||
"""
|
||||
einops
|
||||
|
||||
@@ -469,14 +459,16 @@ class BSRoformer(Module):
|
||||
x_is_mps = True if device.type == "mps" else False
|
||||
|
||||
if raw_audio.ndim == 2:
|
||||
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
||||
raw_audio = rearrange(raw_audio, "b t -> b 1 t")
|
||||
|
||||
channels = raw_audio.shape[1]
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), (
|
||||
"stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)"
|
||||
)
|
||||
|
||||
# to stft
|
||||
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, "* t")
|
||||
|
||||
stft_window = self.stft_window_fn(device=device)
|
||||
|
||||
@@ -485,16 +477,21 @@ class BSRoformer(Module):
|
||||
try:
|
||||
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
||||
except:
|
||||
stft_repr = torch.stft(raw_audio.cpu() if x_is_mps else raw_audio, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=True).to(device)
|
||||
stft_repr = torch.stft(
|
||||
raw_audio.cpu() if x_is_mps else raw_audio,
|
||||
**self.stft_kwargs,
|
||||
window=stft_window.cpu() if x_is_mps else stft_window,
|
||||
return_complex=True,
|
||||
).to(device)
|
||||
|
||||
stft_repr = torch.view_as_real(stft_repr)
|
||||
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, "* f t c")
|
||||
|
||||
# merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
||||
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')
|
||||
stft_repr = rearrange(stft_repr, "b s f t c -> b (f s) t c")
|
||||
|
||||
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
|
||||
x = rearrange(stft_repr, "b f t c -> b t (f c)")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(self.band_split, x, use_reentrant=False)
|
||||
@@ -505,16 +502,15 @@ class BSRoformer(Module):
|
||||
|
||||
store = [None] * len(self.layers)
|
||||
for i, transformer_block in enumerate(self.layers):
|
||||
|
||||
if len(transformer_block) == 3:
|
||||
linear_transformer, time_transformer, freq_transformer = transformer_block
|
||||
|
||||
x, ft_ps = pack([x], 'b * d')
|
||||
x, ft_ps = pack([x], "b * d")
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(linear_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = linear_transformer(x)
|
||||
x, = unpack(x, ft_ps, 'b * d')
|
||||
(x,) = unpack(x, ft_ps, "b * d")
|
||||
else:
|
||||
time_transformer, freq_transformer = transformer_block
|
||||
|
||||
@@ -523,24 +519,24 @@ class BSRoformer(Module):
|
||||
for j in range(i):
|
||||
x = x + store[j]
|
||||
|
||||
x = rearrange(x, 'b t f d -> b f t d')
|
||||
x, ps = pack([x], '* t d')
|
||||
x = rearrange(x, "b t f d -> b f t d")
|
||||
x, ps = pack([x], "* t d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(time_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = time_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* t d')
|
||||
x = rearrange(x, 'b f t d -> b t f d')
|
||||
x, ps = pack([x], '* f d')
|
||||
(x,) = unpack(x, ps, "* t d")
|
||||
x = rearrange(x, "b f t d -> b t f d")
|
||||
x, ps = pack([x], "* f d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(freq_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = freq_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* f d')
|
||||
(x,) = unpack(x, ps, "* f d")
|
||||
|
||||
if self.skip_connection:
|
||||
store[i] = x
|
||||
@@ -553,11 +549,11 @@ class BSRoformer(Module):
|
||||
mask = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1)
|
||||
else:
|
||||
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
||||
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
|
||||
mask = rearrange(mask, "b n t (f c) -> b n f t c", c=2)
|
||||
|
||||
# modulate frequency representation
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
||||
stft_repr = rearrange(stft_repr, "b f t c -> b 1 f t c")
|
||||
|
||||
# complex number multiplication
|
||||
|
||||
@@ -568,18 +564,26 @@ class BSRoformer(Module):
|
||||
|
||||
# istft
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
||||
stft_repr = rearrange(stft_repr, "b n (f s) t -> (b n s) f t", s=self.audio_channels)
|
||||
|
||||
# same as torch.stft() fix for MacOS MPS above
|
||||
try:
|
||||
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1])
|
||||
recon_audio = torch.istft(
|
||||
stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1]
|
||||
)
|
||||
except:
|
||||
recon_audio = torch.istft(stft_repr.cpu() if x_is_mps else stft_repr, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=False, length=raw_audio.shape[-1]).to(device)
|
||||
recon_audio = torch.istft(
|
||||
stft_repr.cpu() if x_is_mps else stft_repr,
|
||||
**self.stft_kwargs,
|
||||
window=stft_window.cpu() if x_is_mps else stft_window,
|
||||
return_complex=False,
|
||||
length=raw_audio.shape[-1],
|
||||
).to(device)
|
||||
|
||||
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
|
||||
recon_audio = rearrange(recon_audio, "(b n s) t -> b n s t", s=self.audio_channels, n=num_stems)
|
||||
|
||||
if num_stems == 1:
|
||||
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
||||
recon_audio = rearrange(recon_audio, "b 1 s t -> b s t")
|
||||
|
||||
# if a target is passed in, calculate loss for learning
|
||||
|
||||
@@ -590,13 +594,13 @@ class BSRoformer(Module):
|
||||
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
||||
|
||||
if target.ndim == 2:
|
||||
target = rearrange(target, '... t -> ... 1 t')
|
||||
target = rearrange(target, "... t -> ... 1 t")
|
||||
|
||||
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
||||
target = target[..., : recon_audio.shape[-1]] # protect against lost length on istft
|
||||
|
||||
loss = F.l1_loss(recon_audio, target)
|
||||
|
||||
multi_stft_resolution_loss = 0.
|
||||
multi_stft_resolution_loss = 0.0
|
||||
|
||||
for window_size in self.multi_stft_resolutions_window_sizes:
|
||||
res_stft_kwargs = dict(
|
||||
@@ -607,8 +611,8 @@ class BSRoformer(Module):
|
||||
**self.multi_stft_kwargs,
|
||||
)
|
||||
|
||||
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
recon_Y = torch.stft(rearrange(recon_audio, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
|
||||
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
||||
|
||||
@@ -619,4 +623,4 @@ class BSRoformer(Module):
|
||||
if not return_loss_breakdown:
|
||||
return total_loss
|
||||
|
||||
return total_loss, (loss, multi_stft_resolution_loss)
|
||||
return total_loss, (loss, multi_stft_resolution_loss)
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum, Tensor
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
import torch.nn.functional as F
|
||||
|
||||
from bs_roformer.attend import Attend
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from typing import Tuple, Optional, List, Callable
|
||||
from typing import Tuple, Optional, Callable
|
||||
# from beartype.typing import Tuple, Optional, List, Callable
|
||||
# from beartype import beartype
|
||||
|
||||
@@ -22,6 +22,7 @@ from librosa import filters
|
||||
|
||||
# helper functions
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@@ -38,9 +39,9 @@ def unpack_one(t, ps, pattern):
|
||||
return unpack(t, ps, pattern)[0]
|
||||
|
||||
|
||||
def pad_at_dim(t, pad, dim=-1, value=0.):
|
||||
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
||||
zeros = ((0, 0) * dims_from_right)
|
||||
def pad_at_dim(t, pad, dim=-1, value=0.0):
|
||||
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
||||
zeros = (0, 0) * dims_from_right
|
||||
return F.pad(t, (*zeros, *pad), value=value)
|
||||
|
||||
|
||||
@@ -50,10 +51,11 @@ def l2norm(t):
|
||||
|
||||
# norm
|
||||
|
||||
|
||||
class RMSNorm(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.scale = dim ** 0.5
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
@@ -62,13 +64,9 @@ class RMSNorm(Module):
|
||||
|
||||
# attention
|
||||
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
mult=4,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, dim, mult=4, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = int(dim * mult)
|
||||
self.net = nn.Sequential(
|
||||
@@ -77,7 +75,7 @@ class FeedForward(Module):
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_inner, dim),
|
||||
nn.Dropout(dropout)
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -85,18 +83,10 @@ class FeedForward(Module):
|
||||
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.,
|
||||
rotary_embed=None,
|
||||
flash=True
|
||||
):
|
||||
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0, rotary_embed=None, flash=True):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
dim_inner = heads * dim_head
|
||||
|
||||
self.rotary_embed = rotary_embed
|
||||
@@ -108,15 +98,12 @@ class Attention(Module):
|
||||
|
||||
self.to_gates = nn.Linear(dim, heads)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(dim_inner, dim, bias=False),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
self.to_out = nn.Sequential(nn.Linear(dim_inner, dim, bias=False), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
||||
q, k, v = rearrange(self.to_qkv(x), "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
|
||||
|
||||
if exists(self.rotary_embed):
|
||||
q = self.rotary_embed.rotate_queries_or_keys(q)
|
||||
@@ -125,9 +112,9 @@ class Attention(Module):
|
||||
out = self.attend(q, k, v)
|
||||
|
||||
gates = self.to_gates(x)
|
||||
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
||||
out = out * rearrange(gates, "b n h -> b h n 1").sigmoid()
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -137,42 +124,22 @@ class LinearAttention(Module):
|
||||
"""
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
dim_head=32,
|
||||
heads=8,
|
||||
scale=8,
|
||||
flash=False,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, *, dim, dim_head=32, heads=8, scale=8, flash=False, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = dim_head * heads
|
||||
self.norm = RMSNorm(dim)
|
||||
|
||||
self.to_qkv = nn.Sequential(
|
||||
nn.Linear(dim, dim_inner * 3, bias=False),
|
||||
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
||||
nn.Linear(dim, dim_inner * 3, bias=False), Rearrange("b n (qkv h d) -> qkv b h d n", qkv=3, h=heads)
|
||||
)
|
||||
|
||||
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
||||
|
||||
self.attend = Attend(
|
||||
scale=scale,
|
||||
dropout=dropout,
|
||||
flash=flash
|
||||
)
|
||||
self.attend = Attend(scale=scale, dropout=dropout, flash=flash)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
Rearrange('b h d n -> b n (h d)'),
|
||||
nn.Linear(dim_inner, dim, bias=False)
|
||||
)
|
||||
self.to_out = nn.Sequential(Rearrange("b h d n -> b n (h d)"), nn.Linear(dim_inner, dim, bias=False))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x
|
||||
):
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x)
|
||||
@@ -187,19 +154,19 @@ class LinearAttention(Module):
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = ModuleList([])
|
||||
@@ -208,18 +175,20 @@ class Transformer(Module):
|
||||
if linear_attn:
|
||||
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
||||
else:
|
||||
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed, flash=flash_attn)
|
||||
attn = Attention(
|
||||
dim=dim,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed,
|
||||
flash=flash_attn,
|
||||
)
|
||||
|
||||
self.layers.append(ModuleList([
|
||||
attn,
|
||||
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
||||
]))
|
||||
self.layers.append(ModuleList([attn, FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)]))
|
||||
|
||||
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
@@ -229,22 +198,16 @@ class Transformer(Module):
|
||||
|
||||
# bandsplit module
|
||||
|
||||
|
||||
class BandSplit(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...]
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...]):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_features = ModuleList([])
|
||||
|
||||
for dim_in in dim_inputs:
|
||||
net = nn.Sequential(
|
||||
RMSNorm(dim_in),
|
||||
nn.Linear(dim_in, dim)
|
||||
)
|
||||
net = nn.Sequential(RMSNorm(dim_in), nn.Linear(dim_in, dim))
|
||||
|
||||
self.to_features.append(net)
|
||||
|
||||
@@ -259,13 +222,7 @@ class BandSplit(Module):
|
||||
return torch.stack(outs, dim=-2)
|
||||
|
||||
|
||||
def MLP(
|
||||
dim_in,
|
||||
dim_out,
|
||||
dim_hidden=None,
|
||||
depth=1,
|
||||
activation=nn.Tanh
|
||||
):
|
||||
def MLP(dim_in, dim_out, dim_hidden=None, depth=1, activation=nn.Tanh):
|
||||
dim_hidden = default(dim_hidden, dim_in)
|
||||
|
||||
net = []
|
||||
@@ -286,13 +243,7 @@ def MLP(
|
||||
|
||||
class MaskEstimator(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...],
|
||||
depth,
|
||||
mlp_expansion_factor=4
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...], depth, mlp_expansion_factor=4):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_freqs = ModuleList([])
|
||||
@@ -301,10 +252,7 @@ class MaskEstimator(Module):
|
||||
for dim_in in dim_inputs:
|
||||
net = []
|
||||
|
||||
mlp = nn.Sequential(
|
||||
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
||||
nn.GLU(dim=-1)
|
||||
)
|
||||
mlp = nn.Sequential(MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), nn.GLU(dim=-1))
|
||||
|
||||
self.to_freqs.append(mlp)
|
||||
|
||||
@@ -322,43 +270,43 @@ class MaskEstimator(Module):
|
||||
|
||||
# main class
|
||||
|
||||
class MelBandRoformer(Module):
|
||||
|
||||
class MelBandRoformer(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
num_bands=60,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.1,
|
||||
ff_dropout=0.1,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
sample_rate=44100, # needed for mel filter bank from librosa
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=1,
|
||||
multi_stft_resolution_loss_weight=1.,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
num_bands=60,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.1,
|
||||
ff_dropout=0.1,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
sample_rate=44100, # needed for mel filter bank from librosa
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=1,
|
||||
multi_stft_resolution_loss_weight=1.0,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -376,7 +324,7 @@ class MelBandRoformer(Module):
|
||||
dim_head=dim_head,
|
||||
attn_dropout=attn_dropout,
|
||||
ff_dropout=ff_dropout,
|
||||
flash_attn=flash_attn
|
||||
flash_attn=flash_attn,
|
||||
)
|
||||
|
||||
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
||||
@@ -397,13 +345,12 @@ class MelBandRoformer(Module):
|
||||
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
||||
|
||||
self.stft_kwargs = dict(
|
||||
n_fft=stft_n_fft,
|
||||
hop_length=stft_hop_length,
|
||||
win_length=stft_win_length,
|
||||
normalized=stft_normalized
|
||||
n_fft=stft_n_fft, hop_length=stft_hop_length, win_length=stft_win_length, normalized=stft_normalized
|
||||
)
|
||||
|
||||
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]
|
||||
freqs = torch.stft(
|
||||
torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True
|
||||
).shape[1]
|
||||
|
||||
# create mel filter bank
|
||||
# with librosa.filters.mel as in section 2 of paper
|
||||
@@ -414,43 +361,40 @@ class MelBandRoformer(Module):
|
||||
|
||||
# for some reason, it doesn't include the first freq? just force a value for now
|
||||
|
||||
mel_filter_bank[0][0] = 1.
|
||||
mel_filter_bank[0][0] = 1.0
|
||||
|
||||
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
|
||||
# so let's force a positive value
|
||||
|
||||
mel_filter_bank[-1, -1] = 1.
|
||||
mel_filter_bank[-1, -1] = 1.0
|
||||
|
||||
# binary as in paper (then estimated masks are averaged for overlapping regions)
|
||||
|
||||
freqs_per_band = mel_filter_bank > 0
|
||||
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
|
||||
assert freqs_per_band.any(dim=0).all(), "all frequencies need to be covered by all bands for now"
|
||||
|
||||
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
|
||||
repeated_freq_indices = repeat(torch.arange(freqs), "f -> b f", b=num_bands)
|
||||
freq_indices = repeated_freq_indices[freqs_per_band]
|
||||
|
||||
if stereo:
|
||||
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
|
||||
freq_indices = repeat(freq_indices, "f -> f s", s=2)
|
||||
freq_indices = freq_indices * 2 + torch.arange(2)
|
||||
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
|
||||
freq_indices = rearrange(freq_indices, "f s -> (f s)")
|
||||
|
||||
self.register_buffer('freq_indices', freq_indices, persistent=False)
|
||||
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
|
||||
self.register_buffer("freq_indices", freq_indices, persistent=False)
|
||||
self.register_buffer("freqs_per_band", freqs_per_band, persistent=False)
|
||||
|
||||
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
|
||||
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
|
||||
num_freqs_per_band = reduce(freqs_per_band, "b f -> b", "sum")
|
||||
num_bands_per_freq = reduce(freqs_per_band, "b f -> f", "sum")
|
||||
|
||||
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
|
||||
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
|
||||
self.register_buffer("num_freqs_per_band", num_freqs_per_band, persistent=False)
|
||||
self.register_buffer("num_bands_per_freq", num_bands_per_freq, persistent=False)
|
||||
|
||||
# band split and mask estimator
|
||||
|
||||
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
|
||||
|
||||
self.band_split = BandSplit(
|
||||
dim=dim,
|
||||
dim_inputs=freqs_per_bands_with_complex
|
||||
)
|
||||
self.band_split = BandSplit(dim=dim, dim_inputs=freqs_per_bands_with_complex)
|
||||
|
||||
self.mask_estimators = nn.ModuleList([])
|
||||
|
||||
@@ -471,19 +415,11 @@ class MelBandRoformer(Module):
|
||||
self.multi_stft_n_fft = stft_n_fft
|
||||
self.multi_stft_window_fn = multi_stft_window_fn
|
||||
|
||||
self.multi_stft_kwargs = dict(
|
||||
hop_length=multi_stft_hop_size,
|
||||
normalized=multi_stft_normalized
|
||||
)
|
||||
self.multi_stft_kwargs = dict(hop_length=multi_stft_hop_size, normalized=multi_stft_normalized)
|
||||
|
||||
self.match_input_audio_length = match_input_audio_length
|
||||
|
||||
def forward(
|
||||
self,
|
||||
raw_audio,
|
||||
target=None,
|
||||
return_loss_breakdown=False
|
||||
):
|
||||
def forward(self, raw_audio, target=None, return_loss_breakdown=False):
|
||||
"""
|
||||
einops
|
||||
|
||||
@@ -499,28 +435,29 @@ class MelBandRoformer(Module):
|
||||
device = raw_audio.device
|
||||
|
||||
if raw_audio.ndim == 2:
|
||||
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
||||
raw_audio = rearrange(raw_audio, "b t -> b 1 t")
|
||||
|
||||
batch, channels, raw_audio_length = raw_audio.shape
|
||||
|
||||
istft_length = raw_audio_length if self.match_input_audio_length else None
|
||||
|
||||
assert (not self.stereo and channels == 1) or (
|
||||
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), (
|
||||
"stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)"
|
||||
)
|
||||
|
||||
# to stft
|
||||
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, "* t")
|
||||
|
||||
stft_window = self.stft_window_fn(device=device)
|
||||
|
||||
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
||||
stft_repr = torch.view_as_real(stft_repr)
|
||||
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, "* f t c")
|
||||
|
||||
# merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
||||
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')
|
||||
stft_repr = rearrange(stft_repr, "b s f t c -> b (f s) t c")
|
||||
|
||||
# index out all frequencies for all frequency ranges across bands ascending in one go
|
||||
|
||||
@@ -532,7 +469,7 @@ class MelBandRoformer(Module):
|
||||
|
||||
# fold the complex (real and imag) into the frequencies dimension
|
||||
|
||||
x = rearrange(x, 'b f t c -> b t (f c)')
|
||||
x = rearrange(x, "b f t c -> b t (f c)")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(self.band_split, x, use_reentrant=False)
|
||||
@@ -543,16 +480,15 @@ class MelBandRoformer(Module):
|
||||
|
||||
store = [None] * len(self.layers)
|
||||
for i, transformer_block in enumerate(self.layers):
|
||||
|
||||
if len(transformer_block) == 3:
|
||||
linear_transformer, time_transformer, freq_transformer = transformer_block
|
||||
|
||||
x, ft_ps = pack([x], 'b * d')
|
||||
x, ft_ps = pack([x], "b * d")
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(linear_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = linear_transformer(x)
|
||||
x, = unpack(x, ft_ps, 'b * d')
|
||||
(x,) = unpack(x, ft_ps, "b * d")
|
||||
else:
|
||||
time_transformer, freq_transformer = transformer_block
|
||||
|
||||
@@ -561,24 +497,24 @@ class MelBandRoformer(Module):
|
||||
for j in range(i):
|
||||
x = x + store[j]
|
||||
|
||||
x = rearrange(x, 'b t f d -> b f t d')
|
||||
x, ps = pack([x], '* t d')
|
||||
x = rearrange(x, "b t f d -> b f t d")
|
||||
x, ps = pack([x], "* t d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(time_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = time_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* t d')
|
||||
x = rearrange(x, 'b f t d -> b t f d')
|
||||
x, ps = pack([x], '* f d')
|
||||
(x,) = unpack(x, ps, "* t d")
|
||||
x = rearrange(x, "b f t d -> b t f d")
|
||||
x, ps = pack([x], "* f d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(freq_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = freq_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* f d')
|
||||
(x,) = unpack(x, ps, "* f d")
|
||||
|
||||
if self.skip_connection:
|
||||
store[i] = x
|
||||
@@ -588,11 +524,11 @@ class MelBandRoformer(Module):
|
||||
masks = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1)
|
||||
else:
|
||||
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
||||
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
|
||||
masks = rearrange(masks, "b n t (f c) -> b n f t c", c=2)
|
||||
|
||||
# modulate frequency representation
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
||||
stft_repr = rearrange(stft_repr, "b f t c -> b 1 f t c")
|
||||
|
||||
# complex number multiplication
|
||||
|
||||
@@ -603,12 +539,12 @@ class MelBandRoformer(Module):
|
||||
|
||||
# need to average the estimated mask for the overlapped frequencies
|
||||
|
||||
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
|
||||
scatter_indices = repeat(self.freq_indices, "f -> b n f t", b=batch, n=num_stems, t=stft_repr.shape[-1])
|
||||
|
||||
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
|
||||
stft_repr_expanded_stems = repeat(stft_repr, "b 1 ... -> b n ...", n=num_stems)
|
||||
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
|
||||
|
||||
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
|
||||
denom = repeat(self.num_bands_per_freq, "f -> (f r) 1", r=channels)
|
||||
|
||||
masks_averaged = masks_summed / denom.clamp(min=1e-8)
|
||||
|
||||
@@ -618,15 +554,16 @@ class MelBandRoformer(Module):
|
||||
|
||||
# istft
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
||||
stft_repr = rearrange(stft_repr, "b n (f s) t -> (b n s) f t", s=self.audio_channels)
|
||||
|
||||
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
|
||||
length=istft_length)
|
||||
recon_audio = torch.istft(
|
||||
stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=istft_length
|
||||
)
|
||||
|
||||
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
|
||||
recon_audio = rearrange(recon_audio, "(b n s) t -> b n s t", b=batch, s=self.audio_channels, n=num_stems)
|
||||
|
||||
if num_stems == 1:
|
||||
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
||||
recon_audio = rearrange(recon_audio, "b 1 s t -> b s t")
|
||||
|
||||
# if a target is passed in, calculate loss for learning
|
||||
|
||||
@@ -637,13 +574,13 @@ class MelBandRoformer(Module):
|
||||
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
||||
|
||||
if target.ndim == 2:
|
||||
target = rearrange(target, '... t -> ... 1 t')
|
||||
target = rearrange(target, "... t -> ... 1 t")
|
||||
|
||||
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
||||
target = target[..., : recon_audio.shape[-1]] # protect against lost length on istft
|
||||
|
||||
loss = F.l1_loss(recon_audio, target)
|
||||
|
||||
multi_stft_resolution_loss = 0.
|
||||
multi_stft_resolution_loss = 0.0
|
||||
|
||||
for window_size in self.multi_stft_resolutions_window_sizes:
|
||||
res_stft_kwargs = dict(
|
||||
@@ -654,8 +591,8 @@ class MelBandRoformer(Module):
|
||||
**self.multi_stft_kwargs,
|
||||
)
|
||||
|
||||
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
recon_Y = torch.stft(rearrange(recon_audio, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
|
||||
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user