Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -7,23 +7,22 @@ import torch.nn.functional as F
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
|
||||
class Attend(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dropout = 0.,
|
||||
flash = False,
|
||||
scale = None
|
||||
):
|
||||
def __init__(self, dropout=0.0, flash=False, scale=None):
|
||||
super().__init__()
|
||||
self.scale = scale
|
||||
self.dropout = dropout
|
||||
self.attn_dropout = nn.Dropout(dropout)
|
||||
|
||||
self.flash = flash
|
||||
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
||||
assert not (flash and version.parse(torch.__version__) < version.parse("2.0.0")), (
|
||||
"in order to use flash attention, you must be using pytorch 2.0 or above"
|
||||
)
|
||||
|
||||
def flash_attn(self, q, k, v):
|
||||
# _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
||||
@@ -34,7 +33,7 @@ class Attend(nn.Module):
|
||||
|
||||
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||||
return F.scaled_dot_product_attention(q, k, v,dropout_p = self.dropout if self.training else 0.)
|
||||
return F.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout if self.training else 0.0)
|
||||
|
||||
def forward(self, q, k, v):
|
||||
"""
|
||||
@@ -54,7 +53,7 @@ class Attend(nn.Module):
|
||||
|
||||
# similarity
|
||||
|
||||
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
|
||||
sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale
|
||||
|
||||
# attention
|
||||
|
||||
@@ -63,6 +62,6 @@ class Attend(nn.Module):
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
|
||||
out = einsum("b h i j, b h j d -> b h i d", attn, v)
|
||||
|
||||
return out
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum, Tensor
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
import torch.nn.functional as F
|
||||
|
||||
from bs_roformer.attend import Attend
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from typing import Tuple, Optional, List, Callable
|
||||
from typing import Tuple, Optional, Callable
|
||||
# from beartype.typing import Tuple, Optional, List, Callable
|
||||
# from beartype import beartype
|
||||
|
||||
@@ -19,6 +19,7 @@ from einops.layers.torch import Rearrange
|
||||
|
||||
# helper functions
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@@ -37,14 +38,15 @@ def unpack_one(t, ps, pattern):
|
||||
|
||||
# norm
|
||||
|
||||
|
||||
def l2norm(t):
|
||||
return F.normalize(t, dim = -1, p = 2)
|
||||
return F.normalize(t, dim=-1, p=2)
|
||||
|
||||
|
||||
class RMSNorm(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.scale = dim ** 0.5
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
@@ -53,13 +55,9 @@ class RMSNorm(Module):
|
||||
|
||||
# attention
|
||||
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
mult=4,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, dim, mult=4, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = int(dim * mult)
|
||||
self.net = nn.Sequential(
|
||||
@@ -68,7 +66,7 @@ class FeedForward(Module):
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_inner, dim),
|
||||
nn.Dropout(dropout)
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -76,18 +74,10 @@ class FeedForward(Module):
|
||||
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.,
|
||||
rotary_embed=None,
|
||||
flash=True
|
||||
):
|
||||
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0, rotary_embed=None, flash=True):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
dim_inner = heads * dim_head
|
||||
|
||||
self.rotary_embed = rotary_embed
|
||||
@@ -99,15 +89,12 @@ class Attention(Module):
|
||||
|
||||
self.to_gates = nn.Linear(dim, heads)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(dim_inner, dim, bias=False),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
self.to_out = nn.Sequential(nn.Linear(dim_inner, dim, bias=False), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
||||
q, k, v = rearrange(self.to_qkv(x), "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
|
||||
|
||||
if exists(self.rotary_embed):
|
||||
q = self.rotary_embed.rotate_queries_or_keys(q)
|
||||
@@ -116,9 +103,9 @@ class Attention(Module):
|
||||
out = self.attend(q, k, v)
|
||||
|
||||
gates = self.to_gates(x)
|
||||
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
||||
out = out * rearrange(gates, "b n h -> b h n 1").sigmoid()
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -128,42 +115,22 @@ class LinearAttention(Module):
|
||||
"""
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
dim_head=32,
|
||||
heads=8,
|
||||
scale=8,
|
||||
flash=False,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, *, dim, dim_head=32, heads=8, scale=8, flash=False, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = dim_head * heads
|
||||
self.norm = RMSNorm(dim)
|
||||
|
||||
self.to_qkv = nn.Sequential(
|
||||
nn.Linear(dim, dim_inner * 3, bias=False),
|
||||
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
||||
nn.Linear(dim, dim_inner * 3, bias=False), Rearrange("b n (qkv h d) -> qkv b h d n", qkv=3, h=heads)
|
||||
)
|
||||
|
||||
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
||||
|
||||
self.attend = Attend(
|
||||
scale=scale,
|
||||
dropout=dropout,
|
||||
flash=flash
|
||||
)
|
||||
self.attend = Attend(scale=scale, dropout=dropout, flash=flash)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
Rearrange('b h d n -> b n (h d)'),
|
||||
nn.Linear(dim_inner, dim, bias=False)
|
||||
)
|
||||
self.to_out = nn.Sequential(Rearrange("b h d n -> b n (h d)"), nn.Linear(dim_inner, dim, bias=False))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x
|
||||
):
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x)
|
||||
@@ -178,19 +145,19 @@ class LinearAttention(Module):
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = ModuleList([])
|
||||
@@ -199,18 +166,20 @@ class Transformer(Module):
|
||||
if linear_attn:
|
||||
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
||||
else:
|
||||
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed, flash=flash_attn)
|
||||
attn = Attention(
|
||||
dim=dim,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed,
|
||||
flash=flash_attn,
|
||||
)
|
||||
|
||||
self.layers.append(ModuleList([
|
||||
attn,
|
||||
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
||||
]))
|
||||
self.layers.append(ModuleList([attn, FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)]))
|
||||
|
||||
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
@@ -220,22 +189,16 @@ class Transformer(Module):
|
||||
|
||||
# bandsplit module
|
||||
|
||||
|
||||
class BandSplit(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...]
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...]):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_features = ModuleList([])
|
||||
|
||||
for dim_in in dim_inputs:
|
||||
net = nn.Sequential(
|
||||
RMSNorm(dim_in),
|
||||
nn.Linear(dim_in, dim)
|
||||
)
|
||||
net = nn.Sequential(RMSNorm(dim_in), nn.Linear(dim_in, dim))
|
||||
|
||||
self.to_features.append(net)
|
||||
|
||||
@@ -250,13 +213,7 @@ class BandSplit(Module):
|
||||
return torch.stack(outs, dim=-2)
|
||||
|
||||
|
||||
def MLP(
|
||||
dim_in,
|
||||
dim_out,
|
||||
dim_hidden=None,
|
||||
depth=1,
|
||||
activation=nn.Tanh
|
||||
):
|
||||
def MLP(dim_in, dim_out, dim_hidden=None, depth=1, activation=nn.Tanh):
|
||||
dim_hidden = default(dim_hidden, dim_in)
|
||||
|
||||
net = []
|
||||
@@ -277,13 +234,7 @@ def MLP(
|
||||
|
||||
class MaskEstimator(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...],
|
||||
depth,
|
||||
mlp_expansion_factor=4
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...], depth, mlp_expansion_factor=4):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_freqs = ModuleList([])
|
||||
@@ -292,10 +243,7 @@ class MaskEstimator(Module):
|
||||
for dim_in in dim_inputs:
|
||||
net = []
|
||||
|
||||
mlp = nn.Sequential(
|
||||
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
||||
nn.GLU(dim=-1)
|
||||
)
|
||||
mlp = nn.Sequential(MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), nn.GLU(dim=-1))
|
||||
|
||||
self.to_freqs.append(mlp)
|
||||
|
||||
@@ -314,53 +262,106 @@ class MaskEstimator(Module):
|
||||
# main class
|
||||
|
||||
DEFAULT_FREQS_PER_BANDS = (
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2,
|
||||
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
12, 12, 12, 12, 12, 12, 12, 12,
|
||||
24, 24, 24, 24, 24, 24, 24, 24,
|
||||
48, 48, 48, 48, 48, 48, 48, 48,
|
||||
128, 129,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
4,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
12,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
48,
|
||||
128,
|
||||
129,
|
||||
)
|
||||
|
||||
|
||||
class BSRoformer(Module):
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
||||
# in the paper, they divide into ~60 bands, test with 1 for starters
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=2,
|
||||
multi_stft_resolution_loss_weight=1.,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
||||
# in the paper, they divide into ~60 bands, test with 1 for starters
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=2,
|
||||
multi_stft_resolution_loss_weight=1.0,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -379,7 +380,7 @@ class BSRoformer(Module):
|
||||
attn_dropout=attn_dropout,
|
||||
ff_dropout=ff_dropout,
|
||||
flash_attn=flash_attn,
|
||||
norm_output=False
|
||||
norm_output=False,
|
||||
)
|
||||
|
||||
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
||||
@@ -400,26 +401,23 @@ class BSRoformer(Module):
|
||||
self.final_norm = RMSNorm(dim)
|
||||
|
||||
self.stft_kwargs = dict(
|
||||
n_fft=stft_n_fft,
|
||||
hop_length=stft_hop_length,
|
||||
win_length=stft_win_length,
|
||||
normalized=stft_normalized
|
||||
n_fft=stft_n_fft, hop_length=stft_hop_length, win_length=stft_win_length, normalized=stft_normalized
|
||||
)
|
||||
|
||||
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
||||
|
||||
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True).shape[1]
|
||||
freqs = torch.stft(
|
||||
torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True
|
||||
).shape[1]
|
||||
|
||||
assert len(freqs_per_bands) > 1
|
||||
assert sum(
|
||||
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
|
||||
assert sum(freqs_per_bands) == freqs, (
|
||||
f"the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}"
|
||||
)
|
||||
|
||||
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
|
||||
|
||||
self.band_split = BandSplit(
|
||||
dim=dim,
|
||||
dim_inputs=freqs_per_bands_with_complex
|
||||
)
|
||||
self.band_split = BandSplit(dim=dim, dim_inputs=freqs_per_bands_with_complex)
|
||||
|
||||
self.mask_estimators = nn.ModuleList([])
|
||||
|
||||
@@ -440,17 +438,9 @@ class BSRoformer(Module):
|
||||
self.multi_stft_n_fft = stft_n_fft
|
||||
self.multi_stft_window_fn = multi_stft_window_fn
|
||||
|
||||
self.multi_stft_kwargs = dict(
|
||||
hop_length=multi_stft_hop_size,
|
||||
normalized=multi_stft_normalized
|
||||
)
|
||||
self.multi_stft_kwargs = dict(hop_length=multi_stft_hop_size, normalized=multi_stft_normalized)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
raw_audio,
|
||||
target=None,
|
||||
return_loss_breakdown=False
|
||||
):
|
||||
def forward(self, raw_audio, target=None, return_loss_breakdown=False):
|
||||
"""
|
||||
einops
|
||||
|
||||
@@ -469,14 +459,16 @@ class BSRoformer(Module):
|
||||
x_is_mps = True if device.type == "mps" else False
|
||||
|
||||
if raw_audio.ndim == 2:
|
||||
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
||||
raw_audio = rearrange(raw_audio, "b t -> b 1 t")
|
||||
|
||||
channels = raw_audio.shape[1]
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), (
|
||||
"stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)"
|
||||
)
|
||||
|
||||
# to stft
|
||||
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, "* t")
|
||||
|
||||
stft_window = self.stft_window_fn(device=device)
|
||||
|
||||
@@ -485,16 +477,21 @@ class BSRoformer(Module):
|
||||
try:
|
||||
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
||||
except:
|
||||
stft_repr = torch.stft(raw_audio.cpu() if x_is_mps else raw_audio, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=True).to(device)
|
||||
stft_repr = torch.stft(
|
||||
raw_audio.cpu() if x_is_mps else raw_audio,
|
||||
**self.stft_kwargs,
|
||||
window=stft_window.cpu() if x_is_mps else stft_window,
|
||||
return_complex=True,
|
||||
).to(device)
|
||||
|
||||
stft_repr = torch.view_as_real(stft_repr)
|
||||
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, "* f t c")
|
||||
|
||||
# merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
||||
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')
|
||||
stft_repr = rearrange(stft_repr, "b s f t c -> b (f s) t c")
|
||||
|
||||
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
|
||||
x = rearrange(stft_repr, "b f t c -> b t (f c)")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(self.band_split, x, use_reentrant=False)
|
||||
@@ -505,16 +502,15 @@ class BSRoformer(Module):
|
||||
|
||||
store = [None] * len(self.layers)
|
||||
for i, transformer_block in enumerate(self.layers):
|
||||
|
||||
if len(transformer_block) == 3:
|
||||
linear_transformer, time_transformer, freq_transformer = transformer_block
|
||||
|
||||
x, ft_ps = pack([x], 'b * d')
|
||||
x, ft_ps = pack([x], "b * d")
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(linear_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = linear_transformer(x)
|
||||
x, = unpack(x, ft_ps, 'b * d')
|
||||
(x,) = unpack(x, ft_ps, "b * d")
|
||||
else:
|
||||
time_transformer, freq_transformer = transformer_block
|
||||
|
||||
@@ -523,24 +519,24 @@ class BSRoformer(Module):
|
||||
for j in range(i):
|
||||
x = x + store[j]
|
||||
|
||||
x = rearrange(x, 'b t f d -> b f t d')
|
||||
x, ps = pack([x], '* t d')
|
||||
x = rearrange(x, "b t f d -> b f t d")
|
||||
x, ps = pack([x], "* t d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(time_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = time_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* t d')
|
||||
x = rearrange(x, 'b f t d -> b t f d')
|
||||
x, ps = pack([x], '* f d')
|
||||
(x,) = unpack(x, ps, "* t d")
|
||||
x = rearrange(x, "b f t d -> b t f d")
|
||||
x, ps = pack([x], "* f d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(freq_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = freq_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* f d')
|
||||
(x,) = unpack(x, ps, "* f d")
|
||||
|
||||
if self.skip_connection:
|
||||
store[i] = x
|
||||
@@ -553,11 +549,11 @@ class BSRoformer(Module):
|
||||
mask = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1)
|
||||
else:
|
||||
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
||||
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
|
||||
mask = rearrange(mask, "b n t (f c) -> b n f t c", c=2)
|
||||
|
||||
# modulate frequency representation
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
||||
stft_repr = rearrange(stft_repr, "b f t c -> b 1 f t c")
|
||||
|
||||
# complex number multiplication
|
||||
|
||||
@@ -568,18 +564,26 @@ class BSRoformer(Module):
|
||||
|
||||
# istft
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
||||
stft_repr = rearrange(stft_repr, "b n (f s) t -> (b n s) f t", s=self.audio_channels)
|
||||
|
||||
# same as torch.stft() fix for MacOS MPS above
|
||||
try:
|
||||
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1])
|
||||
recon_audio = torch.istft(
|
||||
stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1]
|
||||
)
|
||||
except:
|
||||
recon_audio = torch.istft(stft_repr.cpu() if x_is_mps else stft_repr, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=False, length=raw_audio.shape[-1]).to(device)
|
||||
recon_audio = torch.istft(
|
||||
stft_repr.cpu() if x_is_mps else stft_repr,
|
||||
**self.stft_kwargs,
|
||||
window=stft_window.cpu() if x_is_mps else stft_window,
|
||||
return_complex=False,
|
||||
length=raw_audio.shape[-1],
|
||||
).to(device)
|
||||
|
||||
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
|
||||
recon_audio = rearrange(recon_audio, "(b n s) t -> b n s t", s=self.audio_channels, n=num_stems)
|
||||
|
||||
if num_stems == 1:
|
||||
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
||||
recon_audio = rearrange(recon_audio, "b 1 s t -> b s t")
|
||||
|
||||
# if a target is passed in, calculate loss for learning
|
||||
|
||||
@@ -590,13 +594,13 @@ class BSRoformer(Module):
|
||||
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
||||
|
||||
if target.ndim == 2:
|
||||
target = rearrange(target, '... t -> ... 1 t')
|
||||
target = rearrange(target, "... t -> ... 1 t")
|
||||
|
||||
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
||||
target = target[..., : recon_audio.shape[-1]] # protect against lost length on istft
|
||||
|
||||
loss = F.l1_loss(recon_audio, target)
|
||||
|
||||
multi_stft_resolution_loss = 0.
|
||||
multi_stft_resolution_loss = 0.0
|
||||
|
||||
for window_size in self.multi_stft_resolutions_window_sizes:
|
||||
res_stft_kwargs = dict(
|
||||
@@ -607,8 +611,8 @@ class BSRoformer(Module):
|
||||
**self.multi_stft_kwargs,
|
||||
)
|
||||
|
||||
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
recon_Y = torch.stft(rearrange(recon_audio, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
|
||||
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
||||
|
||||
@@ -619,4 +623,4 @@ class BSRoformer(Module):
|
||||
if not return_loss_breakdown:
|
||||
return total_loss
|
||||
|
||||
return total_loss, (loss, multi_stft_resolution_loss)
|
||||
return total_loss, (loss, multi_stft_resolution_loss)
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum, Tensor
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
import torch.nn.functional as F
|
||||
|
||||
from bs_roformer.attend import Attend
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from typing import Tuple, Optional, List, Callable
|
||||
from typing import Tuple, Optional, Callable
|
||||
# from beartype.typing import Tuple, Optional, List, Callable
|
||||
# from beartype import beartype
|
||||
|
||||
@@ -22,6 +22,7 @@ from librosa import filters
|
||||
|
||||
# helper functions
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@@ -38,9 +39,9 @@ def unpack_one(t, ps, pattern):
|
||||
return unpack(t, ps, pattern)[0]
|
||||
|
||||
|
||||
def pad_at_dim(t, pad, dim=-1, value=0.):
|
||||
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
||||
zeros = ((0, 0) * dims_from_right)
|
||||
def pad_at_dim(t, pad, dim=-1, value=0.0):
|
||||
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
||||
zeros = (0, 0) * dims_from_right
|
||||
return F.pad(t, (*zeros, *pad), value=value)
|
||||
|
||||
|
||||
@@ -50,10 +51,11 @@ def l2norm(t):
|
||||
|
||||
# norm
|
||||
|
||||
|
||||
class RMSNorm(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.scale = dim ** 0.5
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
@@ -62,13 +64,9 @@ class RMSNorm(Module):
|
||||
|
||||
# attention
|
||||
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
mult=4,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, dim, mult=4, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = int(dim * mult)
|
||||
self.net = nn.Sequential(
|
||||
@@ -77,7 +75,7 @@ class FeedForward(Module):
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_inner, dim),
|
||||
nn.Dropout(dropout)
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -85,18 +83,10 @@ class FeedForward(Module):
|
||||
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.,
|
||||
rotary_embed=None,
|
||||
flash=True
|
||||
):
|
||||
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0, rotary_embed=None, flash=True):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
dim_inner = heads * dim_head
|
||||
|
||||
self.rotary_embed = rotary_embed
|
||||
@@ -108,15 +98,12 @@ class Attention(Module):
|
||||
|
||||
self.to_gates = nn.Linear(dim, heads)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(dim_inner, dim, bias=False),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
self.to_out = nn.Sequential(nn.Linear(dim_inner, dim, bias=False), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
||||
q, k, v = rearrange(self.to_qkv(x), "b n (qkv h d) -> qkv b h n d", qkv=3, h=self.heads)
|
||||
|
||||
if exists(self.rotary_embed):
|
||||
q = self.rotary_embed.rotate_queries_or_keys(q)
|
||||
@@ -125,9 +112,9 @@ class Attention(Module):
|
||||
out = self.attend(q, k, v)
|
||||
|
||||
gates = self.to_gates(x)
|
||||
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
||||
out = out * rearrange(gates, "b n h -> b h n 1").sigmoid()
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -137,42 +124,22 @@ class LinearAttention(Module):
|
||||
"""
|
||||
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
dim_head=32,
|
||||
heads=8,
|
||||
scale=8,
|
||||
flash=False,
|
||||
dropout=0.
|
||||
):
|
||||
def __init__(self, *, dim, dim_head=32, heads=8, scale=8, flash=False, dropout=0.0):
|
||||
super().__init__()
|
||||
dim_inner = dim_head * heads
|
||||
self.norm = RMSNorm(dim)
|
||||
|
||||
self.to_qkv = nn.Sequential(
|
||||
nn.Linear(dim, dim_inner * 3, bias=False),
|
||||
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
||||
nn.Linear(dim, dim_inner * 3, bias=False), Rearrange("b n (qkv h d) -> qkv b h d n", qkv=3, h=heads)
|
||||
)
|
||||
|
||||
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
||||
|
||||
self.attend = Attend(
|
||||
scale=scale,
|
||||
dropout=dropout,
|
||||
flash=flash
|
||||
)
|
||||
self.attend = Attend(scale=scale, dropout=dropout, flash=flash)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
Rearrange('b h d n -> b n (h d)'),
|
||||
nn.Linear(dim_inner, dim, bias=False)
|
||||
)
|
||||
self.to_out = nn.Sequential(Rearrange("b h d n -> b n (h d)"), nn.Linear(dim_inner, dim, bias=False))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x
|
||||
):
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x)
|
||||
@@ -187,19 +154,19 @@ class LinearAttention(Module):
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.,
|
||||
ff_dropout=0.,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.0,
|
||||
ff_dropout=0.0,
|
||||
ff_mult=4,
|
||||
norm_output=True,
|
||||
rotary_embed=None,
|
||||
flash_attn=True,
|
||||
linear_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = ModuleList([])
|
||||
@@ -208,18 +175,20 @@ class Transformer(Module):
|
||||
if linear_attn:
|
||||
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
||||
else:
|
||||
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed, flash=flash_attn)
|
||||
attn = Attention(
|
||||
dim=dim,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
dropout=attn_dropout,
|
||||
rotary_embed=rotary_embed,
|
||||
flash=flash_attn,
|
||||
)
|
||||
|
||||
self.layers.append(ModuleList([
|
||||
attn,
|
||||
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
||||
]))
|
||||
self.layers.append(ModuleList([attn, FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)]))
|
||||
|
||||
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
@@ -229,22 +198,16 @@ class Transformer(Module):
|
||||
|
||||
# bandsplit module
|
||||
|
||||
|
||||
class BandSplit(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...]
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...]):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_features = ModuleList([])
|
||||
|
||||
for dim_in in dim_inputs:
|
||||
net = nn.Sequential(
|
||||
RMSNorm(dim_in),
|
||||
nn.Linear(dim_in, dim)
|
||||
)
|
||||
net = nn.Sequential(RMSNorm(dim_in), nn.Linear(dim_in, dim))
|
||||
|
||||
self.to_features.append(net)
|
||||
|
||||
@@ -259,13 +222,7 @@ class BandSplit(Module):
|
||||
return torch.stack(outs, dim=-2)
|
||||
|
||||
|
||||
def MLP(
|
||||
dim_in,
|
||||
dim_out,
|
||||
dim_hidden=None,
|
||||
depth=1,
|
||||
activation=nn.Tanh
|
||||
):
|
||||
def MLP(dim_in, dim_out, dim_hidden=None, depth=1, activation=nn.Tanh):
|
||||
dim_hidden = default(dim_hidden, dim_in)
|
||||
|
||||
net = []
|
||||
@@ -286,13 +243,7 @@ def MLP(
|
||||
|
||||
class MaskEstimator(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_inputs: Tuple[int, ...],
|
||||
depth,
|
||||
mlp_expansion_factor=4
|
||||
):
|
||||
def __init__(self, dim, dim_inputs: Tuple[int, ...], depth, mlp_expansion_factor=4):
|
||||
super().__init__()
|
||||
self.dim_inputs = dim_inputs
|
||||
self.to_freqs = ModuleList([])
|
||||
@@ -301,10 +252,7 @@ class MaskEstimator(Module):
|
||||
for dim_in in dim_inputs:
|
||||
net = []
|
||||
|
||||
mlp = nn.Sequential(
|
||||
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
||||
nn.GLU(dim=-1)
|
||||
)
|
||||
mlp = nn.Sequential(MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), nn.GLU(dim=-1))
|
||||
|
||||
self.to_freqs.append(mlp)
|
||||
|
||||
@@ -322,43 +270,43 @@ class MaskEstimator(Module):
|
||||
|
||||
# main class
|
||||
|
||||
class MelBandRoformer(Module):
|
||||
|
||||
class MelBandRoformer(Module):
|
||||
# @beartype
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
num_bands=60,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.1,
|
||||
ff_dropout=0.1,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
sample_rate=44100, # needed for mel filter bank from librosa
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=1,
|
||||
multi_stft_resolution_loss_weight=1.,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
depth,
|
||||
stereo=False,
|
||||
num_stems=1,
|
||||
time_transformer_depth=2,
|
||||
freq_transformer_depth=2,
|
||||
linear_transformer_depth=0,
|
||||
num_bands=60,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
attn_dropout=0.1,
|
||||
ff_dropout=0.1,
|
||||
flash_attn=True,
|
||||
dim_freqs_in=1025,
|
||||
sample_rate=44100, # needed for mel filter bank from librosa
|
||||
stft_n_fft=2048,
|
||||
stft_hop_length=512,
|
||||
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
||||
stft_win_length=2048,
|
||||
stft_normalized=False,
|
||||
stft_window_fn: Optional[Callable] = None,
|
||||
mask_estimator_depth=1,
|
||||
multi_stft_resolution_loss_weight=1.0,
|
||||
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
||||
multi_stft_hop_size=147,
|
||||
multi_stft_normalized=False,
|
||||
multi_stft_window_fn: Callable = torch.hann_window,
|
||||
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
||||
mlp_expansion_factor=4,
|
||||
use_torch_checkpoint=False,
|
||||
skip_connection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -376,7 +324,7 @@ class MelBandRoformer(Module):
|
||||
dim_head=dim_head,
|
||||
attn_dropout=attn_dropout,
|
||||
ff_dropout=ff_dropout,
|
||||
flash_attn=flash_attn
|
||||
flash_attn=flash_attn,
|
||||
)
|
||||
|
||||
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
||||
@@ -397,13 +345,12 @@ class MelBandRoformer(Module):
|
||||
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
||||
|
||||
self.stft_kwargs = dict(
|
||||
n_fft=stft_n_fft,
|
||||
hop_length=stft_hop_length,
|
||||
win_length=stft_win_length,
|
||||
normalized=stft_normalized
|
||||
n_fft=stft_n_fft, hop_length=stft_hop_length, win_length=stft_win_length, normalized=stft_normalized
|
||||
)
|
||||
|
||||
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]
|
||||
freqs = torch.stft(
|
||||
torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True
|
||||
).shape[1]
|
||||
|
||||
# create mel filter bank
|
||||
# with librosa.filters.mel as in section 2 of paper
|
||||
@@ -414,43 +361,40 @@ class MelBandRoformer(Module):
|
||||
|
||||
# for some reason, it doesn't include the first freq? just force a value for now
|
||||
|
||||
mel_filter_bank[0][0] = 1.
|
||||
mel_filter_bank[0][0] = 1.0
|
||||
|
||||
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
|
||||
# so let's force a positive value
|
||||
|
||||
mel_filter_bank[-1, -1] = 1.
|
||||
mel_filter_bank[-1, -1] = 1.0
|
||||
|
||||
# binary as in paper (then estimated masks are averaged for overlapping regions)
|
||||
|
||||
freqs_per_band = mel_filter_bank > 0
|
||||
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
|
||||
assert freqs_per_band.any(dim=0).all(), "all frequencies need to be covered by all bands for now"
|
||||
|
||||
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
|
||||
repeated_freq_indices = repeat(torch.arange(freqs), "f -> b f", b=num_bands)
|
||||
freq_indices = repeated_freq_indices[freqs_per_band]
|
||||
|
||||
if stereo:
|
||||
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
|
||||
freq_indices = repeat(freq_indices, "f -> f s", s=2)
|
||||
freq_indices = freq_indices * 2 + torch.arange(2)
|
||||
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
|
||||
freq_indices = rearrange(freq_indices, "f s -> (f s)")
|
||||
|
||||
self.register_buffer('freq_indices', freq_indices, persistent=False)
|
||||
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
|
||||
self.register_buffer("freq_indices", freq_indices, persistent=False)
|
||||
self.register_buffer("freqs_per_band", freqs_per_band, persistent=False)
|
||||
|
||||
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
|
||||
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
|
||||
num_freqs_per_band = reduce(freqs_per_band, "b f -> b", "sum")
|
||||
num_bands_per_freq = reduce(freqs_per_band, "b f -> f", "sum")
|
||||
|
||||
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
|
||||
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
|
||||
self.register_buffer("num_freqs_per_band", num_freqs_per_band, persistent=False)
|
||||
self.register_buffer("num_bands_per_freq", num_bands_per_freq, persistent=False)
|
||||
|
||||
# band split and mask estimator
|
||||
|
||||
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
|
||||
|
||||
self.band_split = BandSplit(
|
||||
dim=dim,
|
||||
dim_inputs=freqs_per_bands_with_complex
|
||||
)
|
||||
self.band_split = BandSplit(dim=dim, dim_inputs=freqs_per_bands_with_complex)
|
||||
|
||||
self.mask_estimators = nn.ModuleList([])
|
||||
|
||||
@@ -471,19 +415,11 @@ class MelBandRoformer(Module):
|
||||
self.multi_stft_n_fft = stft_n_fft
|
||||
self.multi_stft_window_fn = multi_stft_window_fn
|
||||
|
||||
self.multi_stft_kwargs = dict(
|
||||
hop_length=multi_stft_hop_size,
|
||||
normalized=multi_stft_normalized
|
||||
)
|
||||
self.multi_stft_kwargs = dict(hop_length=multi_stft_hop_size, normalized=multi_stft_normalized)
|
||||
|
||||
self.match_input_audio_length = match_input_audio_length
|
||||
|
||||
def forward(
|
||||
self,
|
||||
raw_audio,
|
||||
target=None,
|
||||
return_loss_breakdown=False
|
||||
):
|
||||
def forward(self, raw_audio, target=None, return_loss_breakdown=False):
|
||||
"""
|
||||
einops
|
||||
|
||||
@@ -499,28 +435,29 @@ class MelBandRoformer(Module):
|
||||
device = raw_audio.device
|
||||
|
||||
if raw_audio.ndim == 2:
|
||||
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
||||
raw_audio = rearrange(raw_audio, "b t -> b 1 t")
|
||||
|
||||
batch, channels, raw_audio_length = raw_audio.shape
|
||||
|
||||
istft_length = raw_audio_length if self.match_input_audio_length else None
|
||||
|
||||
assert (not self.stereo and channels == 1) or (
|
||||
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
||||
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), (
|
||||
"stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)"
|
||||
)
|
||||
|
||||
# to stft
|
||||
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
||||
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, "* t")
|
||||
|
||||
stft_window = self.stft_window_fn(device=device)
|
||||
|
||||
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
||||
stft_repr = torch.view_as_real(stft_repr)
|
||||
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
||||
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, "* f t c")
|
||||
|
||||
# merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
||||
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')
|
||||
stft_repr = rearrange(stft_repr, "b s f t c -> b (f s) t c")
|
||||
|
||||
# index out all frequencies for all frequency ranges across bands ascending in one go
|
||||
|
||||
@@ -532,7 +469,7 @@ class MelBandRoformer(Module):
|
||||
|
||||
# fold the complex (real and imag) into the frequencies dimension
|
||||
|
||||
x = rearrange(x, 'b f t c -> b t (f c)')
|
||||
x = rearrange(x, "b f t c -> b t (f c)")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(self.band_split, x, use_reentrant=False)
|
||||
@@ -543,16 +480,15 @@ class MelBandRoformer(Module):
|
||||
|
||||
store = [None] * len(self.layers)
|
||||
for i, transformer_block in enumerate(self.layers):
|
||||
|
||||
if len(transformer_block) == 3:
|
||||
linear_transformer, time_transformer, freq_transformer = transformer_block
|
||||
|
||||
x, ft_ps = pack([x], 'b * d')
|
||||
x, ft_ps = pack([x], "b * d")
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(linear_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = linear_transformer(x)
|
||||
x, = unpack(x, ft_ps, 'b * d')
|
||||
(x,) = unpack(x, ft_ps, "b * d")
|
||||
else:
|
||||
time_transformer, freq_transformer = transformer_block
|
||||
|
||||
@@ -561,24 +497,24 @@ class MelBandRoformer(Module):
|
||||
for j in range(i):
|
||||
x = x + store[j]
|
||||
|
||||
x = rearrange(x, 'b t f d -> b f t d')
|
||||
x, ps = pack([x], '* t d')
|
||||
x = rearrange(x, "b t f d -> b f t d")
|
||||
x, ps = pack([x], "* t d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(time_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = time_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* t d')
|
||||
x = rearrange(x, 'b f t d -> b t f d')
|
||||
x, ps = pack([x], '* f d')
|
||||
(x,) = unpack(x, ps, "* t d")
|
||||
x = rearrange(x, "b f t d -> b t f d")
|
||||
x, ps = pack([x], "* f d")
|
||||
|
||||
if self.use_torch_checkpoint:
|
||||
x = checkpoint(freq_transformer, x, use_reentrant=False)
|
||||
else:
|
||||
x = freq_transformer(x)
|
||||
|
||||
x, = unpack(x, ps, '* f d')
|
||||
(x,) = unpack(x, ps, "* f d")
|
||||
|
||||
if self.skip_connection:
|
||||
store[i] = x
|
||||
@@ -588,11 +524,11 @@ class MelBandRoformer(Module):
|
||||
masks = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1)
|
||||
else:
|
||||
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
||||
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
|
||||
masks = rearrange(masks, "b n t (f c) -> b n f t c", c=2)
|
||||
|
||||
# modulate frequency representation
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
||||
stft_repr = rearrange(stft_repr, "b f t c -> b 1 f t c")
|
||||
|
||||
# complex number multiplication
|
||||
|
||||
@@ -603,12 +539,12 @@ class MelBandRoformer(Module):
|
||||
|
||||
# need to average the estimated mask for the overlapped frequencies
|
||||
|
||||
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
|
||||
scatter_indices = repeat(self.freq_indices, "f -> b n f t", b=batch, n=num_stems, t=stft_repr.shape[-1])
|
||||
|
||||
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
|
||||
stft_repr_expanded_stems = repeat(stft_repr, "b 1 ... -> b n ...", n=num_stems)
|
||||
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
|
||||
|
||||
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
|
||||
denom = repeat(self.num_bands_per_freq, "f -> (f r) 1", r=channels)
|
||||
|
||||
masks_averaged = masks_summed / denom.clamp(min=1e-8)
|
||||
|
||||
@@ -618,15 +554,16 @@ class MelBandRoformer(Module):
|
||||
|
||||
# istft
|
||||
|
||||
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
||||
stft_repr = rearrange(stft_repr, "b n (f s) t -> (b n s) f t", s=self.audio_channels)
|
||||
|
||||
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
|
||||
length=istft_length)
|
||||
recon_audio = torch.istft(
|
||||
stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=istft_length
|
||||
)
|
||||
|
||||
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
|
||||
recon_audio = rearrange(recon_audio, "(b n s) t -> b n s t", b=batch, s=self.audio_channels, n=num_stems)
|
||||
|
||||
if num_stems == 1:
|
||||
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
||||
recon_audio = rearrange(recon_audio, "b 1 s t -> b s t")
|
||||
|
||||
# if a target is passed in, calculate loss for learning
|
||||
|
||||
@@ -637,13 +574,13 @@ class MelBandRoformer(Module):
|
||||
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
||||
|
||||
if target.ndim == 2:
|
||||
target = rearrange(target, '... t -> ... 1 t')
|
||||
target = rearrange(target, "... t -> ... 1 t")
|
||||
|
||||
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
||||
target = target[..., : recon_audio.shape[-1]] # protect against lost length on istft
|
||||
|
||||
loss = F.l1_loss(recon_audio, target)
|
||||
|
||||
multi_stft_resolution_loss = 0.
|
||||
multi_stft_resolution_loss = 0.0
|
||||
|
||||
for window_size in self.multi_stft_resolutions_window_sizes:
|
||||
res_stft_kwargs = dict(
|
||||
@@ -654,8 +591,8 @@ class MelBandRoformer(Module):
|
||||
**self.multi_stft_kwargs,
|
||||
)
|
||||
|
||||
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
||||
recon_Y = torch.stft(rearrange(recon_audio, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
target_Y = torch.stft(rearrange(target, "... s t -> (... s) t"), **res_stft_kwargs)
|
||||
|
||||
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
||||
|
||||
|
||||
@@ -1,28 +1,31 @@
|
||||
# This code is modified from https://github.com/ZFTurbo/
|
||||
import librosa
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
import warnings
|
||||
from tqdm import tqdm
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
|
||||
class Roformer_Loader:
|
||||
def get_config(self, config_path):
|
||||
with open(config_path, 'r', encoding='utf-8') as f:
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
# use fullloader to load tag !!python/tuple, code can be improved
|
||||
config = yaml.load(f, Loader=yaml.FullLoader)
|
||||
return config
|
||||
|
||||
def get_default_config(self):
|
||||
default_config = None
|
||||
if self.model_type == 'bs_roformer':
|
||||
if self.model_type == "bs_roformer":
|
||||
# Use model_bs_roformer_ep_368_sdr_12.9628.yaml and model_bs_roformer_ep_317_sdr_12.9755.yaml as default configuration files
|
||||
# Other BS_Roformer models may not be compatible
|
||||
# fmt: off
|
||||
default_config = {
|
||||
"audio": {"chunk_size": 352800, "sample_rate": 44100},
|
||||
"model": {
|
||||
@@ -51,9 +54,10 @@ class Roformer_Loader:
|
||||
"multi_stft_normalized": False,
|
||||
},
|
||||
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
|
||||
"inference": {"batch_size": 2, "num_overlap": 2}
|
||||
"inference": {"batch_size": 2, "num_overlap": 2},
|
||||
}
|
||||
elif self.model_type == 'mel_band_roformer':
|
||||
# fmt: on
|
||||
elif self.model_type == "mel_band_roformer":
|
||||
# Use model_mel_band_roformer_ep_3005_sdr_11.4360.yaml as default configuration files
|
||||
# Other Mel_Band_Roformer models may not be compatible
|
||||
default_config = {
|
||||
@@ -82,29 +86,30 @@ class Roformer_Loader:
|
||||
"multi_stft_resolution_loss_weight": 1.0,
|
||||
"multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
|
||||
"multi_stft_hop_size": 147,
|
||||
"multi_stft_normalized": False
|
||||
"multi_stft_normalized": False,
|
||||
},
|
||||
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
|
||||
"inference": {"batch_size": 2, "num_overlap": 2}
|
||||
"inference": {"batch_size": 2, "num_overlap": 2},
|
||||
}
|
||||
|
||||
return default_config
|
||||
|
||||
|
||||
def get_model_from_config(self):
|
||||
if self.model_type == 'bs_roformer':
|
||||
if self.model_type == "bs_roformer":
|
||||
from bs_roformer.bs_roformer import BSRoformer
|
||||
|
||||
model = BSRoformer(**dict(self.config["model"]))
|
||||
elif self.model_type == 'mel_band_roformer':
|
||||
elif self.model_type == "mel_band_roformer":
|
||||
from bs_roformer.mel_band_roformer import MelBandRoformer
|
||||
|
||||
model = MelBandRoformer(**dict(self.config["model"]))
|
||||
else:
|
||||
print('Error: Unknown model: {}'.format(self.model_type))
|
||||
print("Error: Unknown model: {}".format(self.model_type))
|
||||
model = None
|
||||
return model
|
||||
|
||||
|
||||
def demix_track(self, model, mix, device):
|
||||
C = self.config["audio"]["chunk_size"] # chunk_size
|
||||
C = self.config["audio"]["chunk_size"] # chunk_size
|
||||
N = self.config["inference"]["num_overlap"]
|
||||
fade_size = C // 10
|
||||
step = int(C // N)
|
||||
@@ -116,7 +121,7 @@ class Roformer_Loader:
|
||||
|
||||
# Do pad from the beginning and end to account floating window results better
|
||||
if length_init > 2 * border and (border > 0):
|
||||
mix = nn.functional.pad(mix, (border, border), mode='reflect')
|
||||
mix = nn.functional.pad(mix, (border, border), mode="reflect")
|
||||
|
||||
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
|
||||
window_size = C
|
||||
@@ -125,17 +130,17 @@ class Roformer_Loader:
|
||||
window_start = torch.ones(window_size)
|
||||
window_middle = torch.ones(window_size)
|
||||
window_finish = torch.ones(window_size)
|
||||
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
|
||||
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
|
||||
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
|
||||
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
|
||||
window_middle[-fade_size:] *= fadeout
|
||||
window_middle[:fade_size] *= fadein
|
||||
|
||||
with torch.amp.autocast('cuda'):
|
||||
with torch.amp.autocast("cuda"):
|
||||
with torch.inference_mode():
|
||||
if self.config["training"]["target_instrument"] is None:
|
||||
req_shape = (len(self.config["training"]["instruments"]),) + tuple(mix.shape)
|
||||
else:
|
||||
req_shape = (1, ) + tuple(mix.shape)
|
||||
req_shape = (1,) + tuple(mix.shape)
|
||||
|
||||
result = torch.zeros(req_shape, dtype=torch.float32)
|
||||
counter = torch.zeros(req_shape, dtype=torch.float32)
|
||||
@@ -143,15 +148,15 @@ class Roformer_Loader:
|
||||
batch_data = []
|
||||
batch_locations = []
|
||||
while i < mix.shape[1]:
|
||||
part = mix[:, i:i + C].to(device)
|
||||
part = mix[:, i : i + C].to(device)
|
||||
length = part.shape[-1]
|
||||
if length < C:
|
||||
if length > C // 2 + 1:
|
||||
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
|
||||
part = nn.functional.pad(input=part, pad=(0, C - length), mode="reflect")
|
||||
else:
|
||||
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
||||
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode="constant", value=0)
|
||||
if self.is_half:
|
||||
part=part.half()
|
||||
part = part.half()
|
||||
batch_data.append(part)
|
||||
batch_locations.append((i, length))
|
||||
i += step
|
||||
@@ -170,8 +175,8 @@ class Roformer_Loader:
|
||||
|
||||
for j in range(len(batch_locations)):
|
||||
start, l = batch_locations[j]
|
||||
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
|
||||
counter[..., start:start+l] += window[..., :l]
|
||||
result[..., start : start + l] += x[j][..., :l].cpu() * window[..., :l]
|
||||
counter[..., start : start + l] += window[..., :l]
|
||||
|
||||
batch_data = []
|
||||
batch_locations = []
|
||||
@@ -191,7 +196,6 @@ class Roformer_Loader:
|
||||
else:
|
||||
return {k: v for k, v in zip([self.config["training"]["target_instrument"]], estimated_sources)}
|
||||
|
||||
|
||||
def run_folder(self, input, vocal_root, others_root, format):
|
||||
self.model.eval()
|
||||
path = input
|
||||
@@ -200,20 +204,20 @@ class Roformer_Loader:
|
||||
file_base_name = os.path.splitext(os.path.basename(path))[0]
|
||||
|
||||
sample_rate = 44100
|
||||
if 'sample_rate' in self.config["audio"]:
|
||||
sample_rate = self.config["audio"]['sample_rate']
|
||||
if "sample_rate" in self.config["audio"]:
|
||||
sample_rate = self.config["audio"]["sample_rate"]
|
||||
|
||||
try:
|
||||
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
|
||||
except Exception as e:
|
||||
print('Can read track: {}'.format(path))
|
||||
print('Error message: {}'.format(str(e)))
|
||||
print("Can read track: {}".format(path))
|
||||
print("Error message: {}".format(str(e)))
|
||||
return
|
||||
|
||||
# in case if model only supports mono tracks
|
||||
isstereo = self.config["model"].get("stereo", True)
|
||||
if not isstereo and len(mix.shape) != 1:
|
||||
mix = np.mean(mix, axis=0) # if more than 2 channels, take mean
|
||||
mix = np.mean(mix, axis=0) # if more than 2 channels, take mean
|
||||
print("Warning: Track has more than 1 channels, but model is mono, taking mean of all channels.")
|
||||
|
||||
mix_orig = mix.copy()
|
||||
@@ -226,7 +230,7 @@ class Roformer_Loader:
|
||||
# other instruments are caculated by subtracting target instrument from mixture
|
||||
target_instrument = self.config["training"]["target_instrument"]
|
||||
other_instruments = [i for i in self.config["training"]["instruments"] if i != target_instrument]
|
||||
other = mix_orig - res[target_instrument] # caculate other instruments
|
||||
other = mix_orig - res[target_instrument] # caculate other instruments
|
||||
|
||||
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, target_instrument)
|
||||
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other_instruments[0])
|
||||
@@ -237,11 +241,10 @@ class Roformer_Loader:
|
||||
vocal_inst = self.config["training"]["instruments"][0]
|
||||
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, vocal_inst)
|
||||
self.save_audio(path_vocal, res[vocal_inst].T, sr, format)
|
||||
for other in self.config["training"]["instruments"][1:]: # save other instruments
|
||||
for other in self.config["training"]["instruments"][1:]: # save other instruments
|
||||
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other)
|
||||
self.save_audio(path_other, res[other].T, sr, format)
|
||||
|
||||
|
||||
def save_audio(self, path, data, sr, format):
|
||||
# input path should be endwith '.wav'
|
||||
if format in ["wav", "flac"]:
|
||||
@@ -250,10 +253,11 @@ class Roformer_Loader:
|
||||
sf.write(path, data, sr)
|
||||
else:
|
||||
sf.write(path, data, sr)
|
||||
os.system("ffmpeg -i \"{}\" -vn \"{}\" -q:a 2 -y".format(path, path[:-3] + format))
|
||||
try: os.remove(path)
|
||||
except: pass
|
||||
|
||||
os.system('ffmpeg -i "{}" -vn "{}" -q:a 2 -y'.format(path, path[:-3] + format))
|
||||
try:
|
||||
os.remove(path)
|
||||
except:
|
||||
pass
|
||||
|
||||
def __init__(self, model_path, config_path, device, is_half):
|
||||
self.device = device
|
||||
@@ -270,7 +274,9 @@ class Roformer_Loader:
|
||||
if not os.path.exists(config_path):
|
||||
if self.model_type is None:
|
||||
# if model_type is still None, raise an error
|
||||
raise ValueError("Error: Unknown model type. If you are using a model without a configuration file, Ensure that your model name includes 'bs_roformer', 'bsroformer', 'mel_band_roformer', or 'melbandroformer'. Otherwise, you can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again.")
|
||||
raise ValueError(
|
||||
"Error: Unknown model type. If you are using a model without a configuration file, Ensure that your model name includes 'bs_roformer', 'bsroformer', 'mel_band_roformer', or 'melbandroformer'. Otherwise, you can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again."
|
||||
)
|
||||
self.config = self.get_default_config()
|
||||
else:
|
||||
# if there is a configuration file
|
||||
@@ -289,12 +295,10 @@ class Roformer_Loader:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(state_dict)
|
||||
|
||||
if(is_half==False):
|
||||
if is_half == False:
|
||||
self.model = model.to(device)
|
||||
else:
|
||||
self.model = model.half().to(device)
|
||||
|
||||
|
||||
def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False):
|
||||
self.run_folder(input, vocal_root, others_root, format)
|
||||
|
||||
|
||||
@@ -13,9 +13,7 @@ cpu = torch.device("cpu")
|
||||
|
||||
|
||||
class ConvTDFNetTrim:
|
||||
def __init__(
|
||||
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
|
||||
):
|
||||
def __init__(self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024):
|
||||
super(ConvTDFNetTrim, self).__init__()
|
||||
|
||||
self.dim_f = dim_f
|
||||
@@ -24,17 +22,13 @@ class ConvTDFNetTrim:
|
||||
self.hop = hop
|
||||
self.n_bins = self.n_fft // 2 + 1
|
||||
self.chunk_size = hop * (self.dim_t - 1)
|
||||
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
|
||||
device
|
||||
)
|
||||
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
|
||||
self.target_name = target_name
|
||||
self.blender = "blender" in model_name
|
||||
|
||||
self.dim_c = 4
|
||||
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
|
||||
self.freq_pad = torch.zeros(
|
||||
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
||||
).to(device)
|
||||
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
|
||||
|
||||
self.n = L // 2
|
||||
|
||||
@@ -50,28 +44,18 @@ class ConvTDFNetTrim:
|
||||
)
|
||||
x = torch.view_as_real(x)
|
||||
x = x.permute([0, 3, 1, 2])
|
||||
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
||||
[-1, self.dim_c, self.n_bins, self.dim_t]
|
||||
)
|
||||
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t])
|
||||
return x[:, :, : self.dim_f]
|
||||
|
||||
def istft(self, x, freq_pad=None):
|
||||
freq_pad = (
|
||||
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
||||
if freq_pad is None
|
||||
else freq_pad
|
||||
)
|
||||
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
|
||||
x = torch.cat([x, freq_pad], -2)
|
||||
c = 4 * 2 if self.target_name == "*" else 2
|
||||
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
||||
[-1, 2, self.n_bins, self.dim_t]
|
||||
)
|
||||
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
|
||||
x = x.permute([0, 2, 3, 1])
|
||||
x = x.contiguous()
|
||||
x = torch.view_as_complex(x)
|
||||
x = torch.istft(
|
||||
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
||||
)
|
||||
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
|
||||
return x.reshape([-1, c, self.chunk_size])
|
||||
|
||||
|
||||
@@ -93,9 +77,7 @@ class Predictor:
|
||||
|
||||
logger.info(ort.get_available_providers())
|
||||
self.args = args
|
||||
self.model_ = get_models(
|
||||
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
||||
)
|
||||
self.model_ = get_models(device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft)
|
||||
self.model = ort.InferenceSession(
|
||||
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
|
||||
providers=[
|
||||
@@ -152,9 +134,7 @@ class Predictor:
|
||||
trim = model.n_fft // 2
|
||||
gen_size = model.chunk_size - 2 * trim
|
||||
pad = gen_size - n_sample % gen_size
|
||||
mix_p = np.concatenate(
|
||||
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
||||
)
|
||||
mix_p = np.concatenate((np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1)
|
||||
mix_waves = []
|
||||
i = 0
|
||||
while i < n_sample + pad:
|
||||
@@ -172,15 +152,8 @@ class Predictor:
|
||||
)
|
||||
tar_waves = model.istft(torch.tensor(spec_pred))
|
||||
else:
|
||||
tar_waves = model.istft(
|
||||
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
|
||||
)
|
||||
tar_signal = (
|
||||
tar_waves[:, :, trim:-trim]
|
||||
.transpose(0, 1)
|
||||
.reshape(2, -1)
|
||||
.numpy()[:, :-pad]
|
||||
)
|
||||
tar_waves = model.istft(torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]))
|
||||
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad]
|
||||
|
||||
start = 0 if mix == 0 else margin_size
|
||||
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
||||
@@ -207,9 +180,7 @@ class Predictor:
|
||||
sources = self.demix(mix.T)
|
||||
opt = sources[0].T
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
|
||||
)
|
||||
sf.write("%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate)
|
||||
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
|
||||
else:
|
||||
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
|
||||
@@ -219,18 +190,14 @@ class Predictor:
|
||||
opt_path_vocal = path_vocal[:-4] + ".%s" % format
|
||||
opt_path_other = path_other[:-4] + ".%s" % format
|
||||
if os.path.exists(path_vocal):
|
||||
os.system(
|
||||
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_vocal, opt_path_vocal)
|
||||
)
|
||||
os.system("ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_vocal, opt_path_vocal))
|
||||
if os.path.exists(opt_path_vocal):
|
||||
try:
|
||||
os.remove(path_vocal)
|
||||
except:
|
||||
pass
|
||||
if os.path.exists(path_other):
|
||||
os.system(
|
||||
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_other, opt_path_other)
|
||||
)
|
||||
os.system("ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_other, opt_path_other))
|
||||
if os.path.exists(opt_path_other):
|
||||
try:
|
||||
os.remove(path_other)
|
||||
@@ -240,7 +207,7 @@ class Predictor:
|
||||
|
||||
class MDXNetDereverb:
|
||||
def __init__(self, chunks):
|
||||
self.onnx = "%s/uvr5_weights/onnx_dereverb_By_FoxJoy"%os.path.dirname(os.path.abspath(__file__))
|
||||
self.onnx = "%s/uvr5_weights/onnx_dereverb_By_FoxJoy" % os.path.dirname(os.path.abspath(__file__))
|
||||
self.shifts = 10 # 'Predict with randomised equivariant stabilisation'
|
||||
self.mixing = "min_mag" # ['default','min_mag','max_mag']
|
||||
self.chunks = chunks
|
||||
|
||||
100
tools/uvr5/vr.py
100
tools/uvr5/vr.py
@@ -1,6 +1,8 @@
|
||||
import os,sys
|
||||
import os
|
||||
|
||||
parent_directory = os.path.dirname(os.path.abspath(__file__))
|
||||
import logging,pdb
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import librosa
|
||||
@@ -27,7 +29,7 @@ class AudioPre:
|
||||
"agg": agg,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v2.json"%parent_directory)
|
||||
mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v2.json" % parent_directory)
|
||||
model = Nets.CascadedASPPNet(mp.param["bins"] * 2)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(cpk)
|
||||
@@ -40,9 +42,7 @@ class AudioPre:
|
||||
self.mp = mp
|
||||
self.model = model
|
||||
|
||||
def _path_audio_(
|
||||
self, music_file, ins_root=None, vocal_root=None, format="flac", is_hp3=False
|
||||
):
|
||||
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac", is_hp3=False):
|
||||
if ins_root is None and vocal_root is None:
|
||||
return "No save root."
|
||||
name = os.path.basename(music_file)
|
||||
@@ -61,19 +61,19 @@ class AudioPre:
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
sr = bp["sr"],
|
||||
mono = False,
|
||||
dtype = np.float32,
|
||||
res_type = bp["res_type"],
|
||||
sr=bp["sr"],
|
||||
mono=False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
orig_sr = self.mp.param["band"][d + 1]["sr"],
|
||||
target_sr = bp["sr"],
|
||||
res_type = bp["res_type"],
|
||||
orig_sr=self.mp.param["band"][d + 1]["sr"],
|
||||
target_sr=bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
@@ -89,9 +89,7 @@ class AudioPre:
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
input_high_end = X_spec_s[d][:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
@@ -100,9 +98,7 @@ class AudioPre:
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data)
|
||||
# Postprocess
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
@@ -111,13 +107,11 @@ class AudioPre:
|
||||
v_spec_m = X_spec_m - y_spec_m
|
||||
|
||||
if is_hp3 == True:
|
||||
ins_root,vocal_root = vocal_root,ins_root
|
||||
ins_root, vocal_root = vocal_root, ins_root
|
||||
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
input_high_end_ = spec_utils.mirroring(self.data["high_end_process"], y_spec_m, input_high_end, self.mp)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
@@ -138,9 +132,7 @@ class AudioPre:
|
||||
self.mp.param["sr"],
|
||||
) #
|
||||
else:
|
||||
path = os.path.join(
|
||||
ins_root, head + "{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
path = os.path.join(ins_root, head + "{}_{}.wav".format(name, self.data["agg"]))
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
@@ -160,12 +152,8 @@ class AudioPre:
|
||||
else:
|
||||
head = "vocal_"
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
input_high_end_ = spec_utils.mirroring(self.data["high_end_process"], v_spec_m, input_high_end, self.mp)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
logger.info("%s vocals done" % name)
|
||||
@@ -179,9 +167,7 @@ class AudioPre:
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
else:
|
||||
path = os.path.join(
|
||||
vocal_root, head + "{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
path = os.path.join(vocal_root, head + "{}_{}.wav".format(name, self.data["agg"]))
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
@@ -210,7 +196,7 @@ class AudioPreDeEcho:
|
||||
"agg": agg,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v3.json"%parent_directory)
|
||||
mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v3.json" % parent_directory)
|
||||
nout = 64 if "DeReverb" in model_path else 48
|
||||
model = CascadedNet(mp.param["bins"] * 2, nout)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
@@ -245,19 +231,19 @@ class AudioPreDeEcho:
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
sr = bp["sr"],
|
||||
mono = False,
|
||||
dtype = np.float32,
|
||||
res_type = bp["res_type"],
|
||||
sr=bp["sr"],
|
||||
mono=False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
orig_sr = self.mp.param["band"][d + 1]["sr"],
|
||||
target_sr = bp["sr"],
|
||||
res_type = bp["res_type"],
|
||||
orig_sr=self.mp.param["band"][d + 1]["sr"],
|
||||
target_sr=bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
@@ -273,9 +259,7 @@ class AudioPreDeEcho:
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
input_high_end = X_spec_s[d][:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
@@ -284,9 +268,7 @@ class AudioPreDeEcho:
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data)
|
||||
# Postprocess
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
@@ -296,9 +278,7 @@ class AudioPreDeEcho:
|
||||
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
input_high_end_ = spec_utils.mirroring(self.data["high_end_process"], y_spec_m, input_high_end, self.mp)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
@@ -315,9 +295,7 @@ class AudioPreDeEcho:
|
||||
self.mp.param["sr"],
|
||||
) #
|
||||
else:
|
||||
path = os.path.join(
|
||||
ins_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
path = os.path.join(ins_root, "vocal_{}_{}.wav".format(name, self.data["agg"]))
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
@@ -333,12 +311,8 @@ class AudioPreDeEcho:
|
||||
pass
|
||||
if vocal_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
input_high_end_ = spec_utils.mirroring(self.data["high_end_process"], v_spec_m, input_high_end, self.mp)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
logger.info("%s vocals done" % name)
|
||||
@@ -352,9 +326,7 @@ class AudioPreDeEcho:
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
else:
|
||||
path = os.path.join(
|
||||
vocal_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
path = os.path.join(vocal_root, "instrument_{}_{}.wav".format(name, self.data["agg"]))
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
import os
|
||||
import traceback,gradio as gr
|
||||
import traceback
|
||||
import gradio as gr
|
||||
import logging
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from tools.my_utils import clean_path
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
import librosa,ffmpeg
|
||||
import soundfile as sf
|
||||
import ffmpeg
|
||||
import torch
|
||||
import sys
|
||||
from mdxnet import MDXNetDereverb
|
||||
@@ -16,8 +17,10 @@ from bsroformer import Roformer_Loader
|
||||
|
||||
try:
|
||||
import gradio.analytics as analytics
|
||||
analytics.version_check = lambda:None
|
||||
except:...
|
||||
|
||||
analytics.version_check = lambda: None
|
||||
except:
|
||||
...
|
||||
|
||||
weight_uvr5_root = "tools/uvr5/uvr5_weights"
|
||||
uvr5_names = []
|
||||
@@ -25,21 +28,24 @@ for name in os.listdir(weight_uvr5_root):
|
||||
if name.endswith(".pth") or name.endswith(".ckpt") or "onnx" in name:
|
||||
uvr5_names.append(name.replace(".pth", "").replace(".ckpt", ""))
|
||||
|
||||
device=sys.argv[1]
|
||||
is_half=eval(sys.argv[2])
|
||||
webui_port_uvr5=int(sys.argv[3])
|
||||
is_share=eval(sys.argv[4])
|
||||
device = sys.argv[1]
|
||||
is_half = eval(sys.argv[2])
|
||||
webui_port_uvr5 = int(sys.argv[3])
|
||||
is_share = eval(sys.argv[4])
|
||||
|
||||
def html_left(text, label='p'):
|
||||
|
||||
def html_left(text, label="p"):
|
||||
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
||||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||||
</div>"""
|
||||
|
||||
def html_center(text, label='p'):
|
||||
|
||||
def html_center(text, label="p"):
|
||||
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
||||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||||
</div>"""
|
||||
|
||||
|
||||
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
||||
infos = []
|
||||
try:
|
||||
@@ -52,13 +58,15 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
|
||||
elif "roformer" in model_name.lower():
|
||||
func = Roformer_Loader
|
||||
pre_fun = func(
|
||||
model_path = os.path.join(weight_uvr5_root, model_name + ".ckpt"),
|
||||
config_path = os.path.join(weight_uvr5_root, model_name + ".yaml"),
|
||||
device = device,
|
||||
is_half=is_half
|
||||
model_path=os.path.join(weight_uvr5_root, model_name + ".ckpt"),
|
||||
config_path=os.path.join(weight_uvr5_root, model_name + ".yaml"),
|
||||
device=device,
|
||||
is_half=is_half,
|
||||
)
|
||||
if not os.path.exists(os.path.join(weight_uvr5_root, model_name + ".yaml")):
|
||||
infos.append("Warning: You are using a model without a configuration file. The program will automatically use the default configuration file. However, the default configuration file cannot guarantee that all models will run successfully. You can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again. (For example, the configuration file corresponding to the model 'bs_roformer_ep_368_sdr_12.9628.ckpt' should be 'bs_roformer_ep_368_sdr_12.9628.yaml'.) Or you can just ignore this warning.")
|
||||
infos.append(
|
||||
"Warning: You are using a model without a configuration file. The program will automatically use the default configuration file. However, the default configuration file cannot guarantee that all models will run successfully. You can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again. (For example, the configuration file corresponding to the model 'bs_roformer_ep_368_sdr_12.9628.ckpt' should be 'bs_roformer_ep_368_sdr_12.9628.yaml'.) Or you can just ignore this warning."
|
||||
)
|
||||
yield "\n".join(infos)
|
||||
else:
|
||||
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
|
||||
@@ -74,19 +82,15 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
|
||||
paths = [path.name for path in paths]
|
||||
for path in paths:
|
||||
inp_path = os.path.join(inp_root, path)
|
||||
if(os.path.isfile(inp_path)==False):continue
|
||||
if os.path.isfile(inp_path) == False:
|
||||
continue
|
||||
need_reformat = 1
|
||||
done = 0
|
||||
try:
|
||||
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
||||
if (
|
||||
info["streams"][0]["channels"] == 2
|
||||
and info["streams"][0]["sample_rate"] == "44100"
|
||||
):
|
||||
if info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100":
|
||||
need_reformat = 0
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
|
||||
)
|
||||
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0, is_hp3)
|
||||
done = 1
|
||||
except:
|
||||
need_reformat = 1
|
||||
@@ -96,21 +100,15 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
|
||||
os.path.join(os.environ["TEMP"]),
|
||||
os.path.basename(inp_path),
|
||||
)
|
||||
os.system(
|
||||
f'ffmpeg -i "{inp_path}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{tmp_path}" -y'
|
||||
)
|
||||
os.system(f'ffmpeg -i "{inp_path}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{tmp_path}" -y')
|
||||
inp_path = tmp_path
|
||||
try:
|
||||
if done == 0:
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
|
||||
)
|
||||
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0, is_hp3)
|
||||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(
|
||||
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
||||
)
|
||||
infos.append("%s->%s" % (os.path.basename(inp_path), traceback.format_exc()))
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(traceback.format_exc())
|
||||
@@ -130,80 +128,98 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
|
||||
torch.cuda.empty_cache()
|
||||
yield "\n".join(infos)
|
||||
|
||||
|
||||
with gr.Blocks(title="UVR5 WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=
|
||||
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "<br>" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
|
||||
+ "<br>"
|
||||
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||||
)
|
||||
with gr.Group():
|
||||
gr.Markdown(html_center(i18n("伴奏人声分离&去混响&去回声"),'h2'))
|
||||
gr.Markdown(html_center(i18n("伴奏人声分离&去混响&去回声"), "h2"))
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=html_left(i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "<br>" + \
|
||||
i18n("合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。")+ "<br>" + \
|
||||
i18n("模型分为三类:") + "<br>" + \
|
||||
i18n("1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;") + "<br>" + \
|
||||
i18n("2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;") + "<br>" + \
|
||||
i18n("3、去混响、去延迟模型(by FoxJoy):") + "<br> " + \
|
||||
i18n("(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;") + "<br> " + \
|
||||
i18n("(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。") + "<br>" + \
|
||||
i18n("去混响/去延迟,附:") + "<br>" + \
|
||||
i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;") + "<br>" + \
|
||||
i18n("2、MDX-Net-Dereverb模型挺慢的;") + "<br>" + \
|
||||
i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"),'h4')
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
||||
dir_wav_input = gr.Textbox(
|
||||
label=i18n("输入待处理音频文件夹路径"),
|
||||
placeholder="C:\\Users\\Desktop\\todo-songs",
|
||||
)
|
||||
wav_inputs = gr.File(
|
||||
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
||||
)
|
||||
with gr.Column():
|
||||
agg = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=20,
|
||||
step=1,
|
||||
label=i18n("人声提取激进程度"),
|
||||
value=10,
|
||||
interactive=True,
|
||||
visible=False, # 先不开放调整
|
||||
)
|
||||
opt_vocal_root = gr.Textbox(
|
||||
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt"
|
||||
)
|
||||
opt_ins_root = gr.Textbox(
|
||||
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt"
|
||||
)
|
||||
format0 = gr.Radio(
|
||||
label=i18n("导出文件格式"),
|
||||
choices=["wav", "flac", "mp3", "m4a"],
|
||||
value="flac",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
but2 = gr.Button(i18n("转换"), variant="primary")
|
||||
with gr.Row():
|
||||
vc_output4 = gr.Textbox(label=i18n("输出信息"),lines=3)
|
||||
but2.click(
|
||||
uvr,
|
||||
[
|
||||
model_choose,
|
||||
dir_wav_input,
|
||||
opt_vocal_root,
|
||||
wav_inputs,
|
||||
opt_ins_root,
|
||||
agg,
|
||||
format0,
|
||||
],
|
||||
[vc_output4],
|
||||
api_name="uvr_convert",
|
||||
gr.Markdown(
|
||||
value=html_left(
|
||||
i18n("人声伴奏分离批量处理, 使用UVR5模型。")
|
||||
+ "<br>"
|
||||
+ i18n(
|
||||
"合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。"
|
||||
)
|
||||
app.queue().launch(#concurrency_count=511, max_size=1022
|
||||
+ "<br>"
|
||||
+ i18n("模型分为三类:")
|
||||
+ "<br>"
|
||||
+ i18n(
|
||||
"1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;"
|
||||
)
|
||||
+ "<br>"
|
||||
+ i18n("2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;")
|
||||
+ "<br>"
|
||||
+ i18n("3、去混响、去延迟模型(by FoxJoy):")
|
||||
+ "<br> "
|
||||
+ i18n("(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;")
|
||||
+ "<br> "
|
||||
+ i18n(
|
||||
"(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。"
|
||||
)
|
||||
+ "<br>"
|
||||
+ i18n("去混响/去延迟,附:")
|
||||
+ "<br>"
|
||||
+ i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;")
|
||||
+ "<br>"
|
||||
+ i18n("2、MDX-Net-Dereverb模型挺慢的;")
|
||||
+ "<br>"
|
||||
+ i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"),
|
||||
"h4",
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
||||
dir_wav_input = gr.Textbox(
|
||||
label=i18n("输入待处理音频文件夹路径"),
|
||||
placeholder="C:\\Users\\Desktop\\todo-songs",
|
||||
)
|
||||
wav_inputs = gr.File(
|
||||
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
||||
)
|
||||
with gr.Column():
|
||||
agg = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=20,
|
||||
step=1,
|
||||
label=i18n("人声提取激进程度"),
|
||||
value=10,
|
||||
interactive=True,
|
||||
visible=False, # 先不开放调整
|
||||
)
|
||||
opt_vocal_root = gr.Textbox(label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt")
|
||||
opt_ins_root = gr.Textbox(label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt")
|
||||
format0 = gr.Radio(
|
||||
label=i18n("导出文件格式"),
|
||||
choices=["wav", "flac", "mp3", "m4a"],
|
||||
value="flac",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
but2 = gr.Button(i18n("转换"), variant="primary")
|
||||
with gr.Row():
|
||||
vc_output4 = gr.Textbox(label=i18n("输出信息"), lines=3)
|
||||
but2.click(
|
||||
uvr,
|
||||
[
|
||||
model_choose,
|
||||
dir_wav_input,
|
||||
opt_vocal_root,
|
||||
wav_inputs,
|
||||
opt_ins_root,
|
||||
agg,
|
||||
format0,
|
||||
],
|
||||
[vc_output4],
|
||||
api_name="uvr_convert",
|
||||
)
|
||||
app.queue().launch( # concurrency_count=511, max_size=1022
|
||||
server_name="0.0.0.0",
|
||||
inbrowser=True,
|
||||
share=is_share,
|
||||
|
||||
Reference in New Issue
Block a user