Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -15,6 +15,7 @@
|
||||
Credits
|
||||
This code is modified from https://github.com/GitYCC/g2pW
|
||||
"""
|
||||
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
@@ -23,21 +24,24 @@ import numpy as np
|
||||
|
||||
from .utils import tokenize_and_map
|
||||
|
||||
ANCHOR_CHAR = '▁'
|
||||
ANCHOR_CHAR = "▁"
|
||||
|
||||
|
||||
def prepare_onnx_input(tokenizer,
|
||||
labels: List[str],
|
||||
char2phonemes: Dict[str, List[int]],
|
||||
chars: List[str],
|
||||
texts: List[str],
|
||||
query_ids: List[int],
|
||||
use_mask: bool=False,
|
||||
window_size: int=None,
|
||||
max_len: int=512) -> Dict[str, np.array]:
|
||||
def prepare_onnx_input(
|
||||
tokenizer,
|
||||
labels: List[str],
|
||||
char2phonemes: Dict[str, List[int]],
|
||||
chars: List[str],
|
||||
texts: List[str],
|
||||
query_ids: List[int],
|
||||
use_mask: bool = False,
|
||||
window_size: int = None,
|
||||
max_len: int = 512,
|
||||
) -> Dict[str, np.array]:
|
||||
if window_size is not None:
|
||||
truncated_texts, truncated_query_ids = _truncate_texts(
|
||||
window_size=window_size, texts=texts, query_ids=query_ids)
|
||||
window_size=window_size, texts=texts, query_ids=query_ids
|
||||
)
|
||||
input_ids = []
|
||||
token_type_ids = []
|
||||
attention_masks = []
|
||||
@@ -50,33 +54,27 @@ def prepare_onnx_input(tokenizer,
|
||||
query_id = (truncated_query_ids if window_size else query_ids)[idx]
|
||||
|
||||
try:
|
||||
tokens, text2token, token2text = tokenize_and_map(
|
||||
tokenizer=tokenizer, text=text)
|
||||
tokens, text2token, token2text = tokenize_and_map(tokenizer=tokenizer, text=text)
|
||||
except Exception:
|
||||
print(f'warning: text "{text}" is invalid')
|
||||
return {}
|
||||
|
||||
text, query_id, tokens, text2token, token2text = _truncate(
|
||||
max_len=max_len,
|
||||
text=text,
|
||||
query_id=query_id,
|
||||
tokens=tokens,
|
||||
text2token=text2token,
|
||||
token2text=token2text)
|
||||
max_len=max_len, text=text, query_id=query_id, tokens=tokens, text2token=text2token, token2text=token2text
|
||||
)
|
||||
|
||||
processed_tokens = ['[CLS]'] + tokens + ['[SEP]']
|
||||
processed_tokens = ["[CLS]"] + tokens + ["[SEP]"]
|
||||
|
||||
input_id = list(
|
||||
np.array(tokenizer.convert_tokens_to_ids(processed_tokens)))
|
||||
token_type_id = list(np.zeros((len(processed_tokens), ), dtype=int))
|
||||
attention_mask = list(np.ones((len(processed_tokens), ), dtype=int))
|
||||
input_id = list(np.array(tokenizer.convert_tokens_to_ids(processed_tokens)))
|
||||
token_type_id = list(np.zeros((len(processed_tokens),), dtype=int))
|
||||
attention_mask = list(np.ones((len(processed_tokens),), dtype=int))
|
||||
|
||||
query_char = text[query_id]
|
||||
phoneme_mask = [1 if i in char2phonemes[query_char] else 0 for i in range(len(labels))] \
|
||||
if use_mask else [1] * len(labels)
|
||||
phoneme_mask = (
|
||||
[1 if i in char2phonemes[query_char] else 0 for i in range(len(labels))] if use_mask else [1] * len(labels)
|
||||
)
|
||||
char_id = chars.index(query_char)
|
||||
position_id = text2token[
|
||||
query_id] + 1 # [CLS] token locate at first place
|
||||
position_id = text2token[query_id] + 1 # [CLS] token locate at first place
|
||||
|
||||
input_ids.append(input_id)
|
||||
token_type_ids.append(token_type_id)
|
||||
@@ -86,18 +84,17 @@ def prepare_onnx_input(tokenizer,
|
||||
position_ids.append(position_id)
|
||||
|
||||
outputs = {
|
||||
'input_ids': np.array(input_ids).astype(np.int64),
|
||||
'token_type_ids': np.array(token_type_ids).astype(np.int64),
|
||||
'attention_masks': np.array(attention_masks).astype(np.int64),
|
||||
'phoneme_masks': np.array(phoneme_masks).astype(np.float32),
|
||||
'char_ids': np.array(char_ids).astype(np.int64),
|
||||
'position_ids': np.array(position_ids).astype(np.int64),
|
||||
"input_ids": np.array(input_ids).astype(np.int64),
|
||||
"token_type_ids": np.array(token_type_ids).astype(np.int64),
|
||||
"attention_masks": np.array(attention_masks).astype(np.int64),
|
||||
"phoneme_masks": np.array(phoneme_masks).astype(np.float32),
|
||||
"char_ids": np.array(char_ids).astype(np.int64),
|
||||
"position_ids": np.array(position_ids).astype(np.int64),
|
||||
}
|
||||
return outputs
|
||||
|
||||
|
||||
def _truncate_texts(window_size: int, texts: List[str],
|
||||
query_ids: List[int]) -> Tuple[List[str], List[int]]:
|
||||
def _truncate_texts(window_size: int, texts: List[str], query_ids: List[int]) -> Tuple[List[str], List[int]]:
|
||||
truncated_texts = []
|
||||
truncated_query_ids = []
|
||||
for text, query_id in zip(texts, query_ids):
|
||||
@@ -111,12 +108,9 @@ def _truncate_texts(window_size: int, texts: List[str],
|
||||
return truncated_texts, truncated_query_ids
|
||||
|
||||
|
||||
def _truncate(max_len: int,
|
||||
text: str,
|
||||
query_id: int,
|
||||
tokens: List[str],
|
||||
text2token: List[int],
|
||||
token2text: List[Tuple[int]]):
|
||||
def _truncate(
|
||||
max_len: int, text: str, query_id: int, tokens: List[str], text2token: List[int], token2text: List[Tuple[int]]
|
||||
):
|
||||
truncate_len = max_len - 2
|
||||
if len(tokens) <= truncate_len:
|
||||
return (text, query_id, tokens, text2token, token2text)
|
||||
@@ -137,14 +131,16 @@ def _truncate(max_len: int,
|
||||
start = token2text[token_start][0]
|
||||
end = token2text[token_end - 1][1]
|
||||
|
||||
return (text[start:end], query_id - start, tokens[token_start:token_end], [
|
||||
i - token_start if i is not None else None
|
||||
for i in text2token[start:end]
|
||||
], [(s - start, e - start) for s, e in token2text[token_start:token_end]])
|
||||
return (
|
||||
text[start:end],
|
||||
query_id - start,
|
||||
tokens[token_start:token_end],
|
||||
[i - token_start if i is not None else None for i in text2token[start:end]],
|
||||
[(s - start, e - start) for s, e in token2text[token_start:token_end]],
|
||||
)
|
||||
|
||||
|
||||
def get_phoneme_labels(polyphonic_chars: List[List[str]]
|
||||
) -> Tuple[List[str], Dict[str, List[int]]]:
|
||||
def get_phoneme_labels(polyphonic_chars: List[List[str]]) -> Tuple[List[str], Dict[str, List[int]]]:
|
||||
labels = sorted(list(set([phoneme for char, phoneme in polyphonic_chars])))
|
||||
char2phonemes = {}
|
||||
for char, phoneme in polyphonic_chars:
|
||||
@@ -154,13 +150,11 @@ def get_phoneme_labels(polyphonic_chars: List[List[str]]
|
||||
return labels, char2phonemes
|
||||
|
||||
|
||||
def get_char_phoneme_labels(polyphonic_chars: List[List[str]]
|
||||
) -> Tuple[List[str], Dict[str, List[int]]]:
|
||||
labels = sorted(
|
||||
list(set([f'{char} {phoneme}' for char, phoneme in polyphonic_chars])))
|
||||
def get_char_phoneme_labels(polyphonic_chars: List[List[str]]) -> Tuple[List[str], Dict[str, List[int]]]:
|
||||
labels = sorted(list(set([f"{char} {phoneme}" for char, phoneme in polyphonic_chars])))
|
||||
char2phonemes = {}
|
||||
for char, phoneme in polyphonic_chars:
|
||||
if char not in char2phonemes:
|
||||
char2phonemes[char] = []
|
||||
char2phonemes[char].append(labels.index(f'{char} {phoneme}'))
|
||||
char2phonemes[char].append(labels.index(f"{char} {phoneme}"))
|
||||
return labels, char2phonemes
|
||||
|
||||
Reference in New Issue
Block a user