Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -1,38 +1,45 @@
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
import utils, os
|
||||
import os
|
||||
|
||||
import utils
|
||||
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist, traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging, traceback
|
||||
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
from collections import OrderedDict as od
|
||||
from random import randint
|
||||
|
||||
from module import commons
|
||||
from peft import LoraConfig, PeftModel, get_peft_model
|
||||
from module.data_utils import (
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||||
)
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrnV3 as SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from process_ckpt import savee
|
||||
from collections import OrderedDict as od
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
@@ -46,7 +53,6 @@ device = "cpu" # cuda以外的设备,等mps优化后加入
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
if torch.cuda.is_available():
|
||||
n_gpus = torch.cuda.device_count()
|
||||
else:
|
||||
@@ -65,7 +71,7 @@ def main():
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
global global_step,no_grad_names,save_root,lora_rank
|
||||
global global_step, no_grad_names, save_root, lora_rank
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.data.exp_dir)
|
||||
logger.info(hps)
|
||||
@@ -74,7 +80,7 @@ def run(rank, n_gpus, hps):
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(
|
||||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
init_method="env://?use_libuv=False",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
@@ -122,21 +128,24 @@ def run(rank, n_gpus, hps):
|
||||
persistent_workers=True,
|
||||
prefetch_factor=4,
|
||||
)
|
||||
save_root="%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir,hps.model.version,hps.train.lora_rank)
|
||||
os.makedirs(save_root,exist_ok=True)
|
||||
lora_rank=int(hps.train.lora_rank)
|
||||
save_root = "%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir, hps.model.version, hps.train.lora_rank)
|
||||
os.makedirs(save_root, exist_ok=True)
|
||||
lora_rank = int(hps.train.lora_rank)
|
||||
lora_config = LoraConfig(
|
||||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||||
r=lora_rank,
|
||||
lora_alpha=lora_rank,
|
||||
init_lora_weights=True,
|
||||
)
|
||||
def get_model(hps):return SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
)
|
||||
|
||||
def get_model(hps):
|
||||
return SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
)
|
||||
|
||||
def get_optim(net_g):
|
||||
return torch.optim.AdamW(
|
||||
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
||||
@@ -144,61 +153,66 @@ def run(rank, n_gpus, hps):
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
def model2cuda(net_g,rank):
|
||||
|
||||
def model2cuda(net_g, rank):
|
||||
if torch.cuda.is_available():
|
||||
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True)
|
||||
else:
|
||||
net_g = net_g.to(device)
|
||||
return net_g
|
||||
try:# 如果能加载自动resume
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
net_g = get_model(hps)
|
||||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||
net_g=model2cuda(net_g,rank)
|
||||
optim_g=get_optim(net_g)
|
||||
net_g = model2cuda(net_g, rank)
|
||||
optim_g = get_optim(net_g)
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(save_root, "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
)
|
||||
epoch_str+=1
|
||||
epoch_str += 1
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
net_g = get_model(hps)
|
||||
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||||
if (
|
||||
hps.train.pretrained_s2G != ""
|
||||
and hps.train.pretrained_s2G != None
|
||||
and os.path.exists(hps.train.pretrained_s2G)
|
||||
):
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print("loaded pretrained %s" % hps.train.pretrained_s2G,
|
||||
print(
|
||||
"loaded pretrained %s" % hps.train.pretrained_s2G,
|
||||
net_g.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
)
|
||||
),
|
||||
)
|
||||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||
net_g=model2cuda(net_g,rank)
|
||||
net_g = model2cuda(net_g, rank)
|
||||
optim_g = get_optim(net_g)
|
||||
|
||||
no_grad_names=set()
|
||||
no_grad_names = set()
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
no_grad_names.add(name.replace("module.",""))
|
||||
no_grad_names.add(name.replace("module.", ""))
|
||||
# print(name, "not requires_grad")
|
||||
# print(no_grad_names)
|
||||
# os._exit(233333)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
)
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
net_d=optim_d=scheduler_d=None
|
||||
print("start training from epoch %s"%epoch_str)
|
||||
net_d = optim_d = scheduler_d = None
|
||||
print("start training from epoch %s" % epoch_str)
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
@@ -230,9 +244,8 @@ def run(rank, n_gpus, hps):
|
||||
scheduler_g.step()
|
||||
print("training done")
|
||||
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||
):
|
||||
|
||||
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
@@ -244,18 +257,32 @@ def train_and_evaluate(
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
|
||||
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(
|
||||
tqdm(train_loader)
|
||||
):
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
spec, spec_lengths = (
|
||||
spec.cuda(
|
||||
rank,
|
||||
non_blocking=True,
|
||||
),
|
||||
spec_lengths.cuda(
|
||||
rank,
|
||||
non_blocking=True,
|
||||
),
|
||||
)
|
||||
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad = False
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
text, text_lengths = (
|
||||
text.cuda(
|
||||
rank,
|
||||
non_blocking=True,
|
||||
),
|
||||
text_lengths.cuda(
|
||||
rank,
|
||||
non_blocking=True,
|
||||
),
|
||||
)
|
||||
else:
|
||||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||
@@ -265,8 +292,18 @@ def train_and_evaluate(
|
||||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
|
||||
loss_gen_all=cfm_loss
|
||||
cfm_loss = net_g(
|
||||
ssl,
|
||||
spec,
|
||||
mel,
|
||||
ssl_lengths,
|
||||
spec_lengths,
|
||||
text,
|
||||
text_lengths,
|
||||
mel_lengths,
|
||||
use_grad_ckpt=hps.train.grad_ckpt,
|
||||
)
|
||||
loss_gen_all = cfm_loss
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
@@ -276,18 +313,17 @@ def train_and_evaluate(
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
lr = optim_g.param_groups[0]["lr"]
|
||||
losses = [cfm_loss]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info("Train Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader)))
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
scalars=scalar_dict)
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
@@ -297,9 +333,7 @@ def train_and_evaluate(
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
save_root, "G_{}.pth".format(global_step)
|
||||
),
|
||||
os.path.join(save_root, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
@@ -307,21 +341,19 @@ def train_and_evaluate(
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
save_root, "G_{}.pth".format(233333333333)
|
||||
),
|
||||
os.path.join(save_root, "G_{}.pth".format(233333333333)),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
sim_ckpt=od()
|
||||
sim_ckpt = od()
|
||||
for key in ckpt:
|
||||
# if "cfm"not in key:
|
||||
# print(key)
|
||||
if key not in no_grad_names:
|
||||
sim_ckpt[key]=ckpt[key].half().cpu()
|
||||
sim_ckpt[key] = ckpt[key].half().cpu()
|
||||
logger.info(
|
||||
"saving ckpt %s_e%s:%s"
|
||||
% (
|
||||
@@ -329,10 +361,11 @@ def train_and_evaluate(
|
||||
epoch,
|
||||
savee(
|
||||
sim_ckpt,
|
||||
hps.name + "_e%s_s%s_l%s" % (epoch, global_step,lora_rank),
|
||||
hps.name + "_e%s_s%s_l%s" % (epoch, global_step, lora_rank),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,lora_rank=lora_rank
|
||||
hps,
|
||||
lora_rank=lora_rank,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user