Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)

* ruff check --fix

* ruff format --line-length 120 --target-version py39

* Change the link for G2PW Model

* update pytorch version and colab
This commit is contained in:
XXXXRT666
2025-04-07 09:42:47 +01:00
committed by GitHub
parent 9da7e17efe
commit 53cac93589
132 changed files with 8185 additions and 6648 deletions

View File

@@ -1,31 +1,28 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
import os
import pdb
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
import argparse
import logging
import platform
from pathlib import Path
import torch, platform
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
from pytorch_lightning.strategies import DDPStrategy
import torch
from AR.data.data_module import Text2SemanticDataModule
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
from pytorch_lightning.strategies import DDPStrategy
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
torch.set_float32_matmul_precision("high")
from AR.utils import get_newest_ckpt
from collections import OrderedDict
from time import time as ttime
import shutil
from AR.utils import get_newest_ckpt
from process_ckpt import my_save
@@ -37,7 +34,7 @@ class my_model_ckpt(ModelCheckpoint):
if_save_every_weights,
half_weights_save_dir,
exp_name,
**kwargs
**kwargs,
):
super().__init__(**kwargs)
self.if_save_latest = if_save_latest
@@ -50,10 +47,7 @@ class my_model_ckpt(ModelCheckpoint):
# if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
if self._should_save_on_train_epoch_end(trainer):
monitor_candidates = self._monitor_candidates(trainer)
if (
self._every_n_epochs >= 1
and (trainer.current_epoch + 1) % self._every_n_epochs == 0
):
if self._every_n_epochs >= 1 and (trainer.current_epoch + 1) % self._every_n_epochs == 0:
if (
self.if_save_latest == True
): ####如果设置只保存最后一个ckpt在保存下一个ckpt后要清理掉之前的所有ckpt
@@ -75,7 +69,7 @@ class my_model_ckpt(ModelCheckpoint):
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
# torch.save(
# print(os.environ)
if(os.environ.get("LOCAL_RANK","0")=="0"):
if os.environ.get("LOCAL_RANK", "0") == "0":
my_save(
to_save_od,
"%s/%s-e%s.ckpt"
@@ -112,7 +106,7 @@ def main(args):
dirpath=ckpt_dir,
)
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
os.environ["MASTER_ADDR"]="localhost"
os.environ["MASTER_ADDR"] = "localhost"
os.environ["USE_LIBUV"] = "0"
trainer: Trainer = Trainer(
max_epochs=config["train"]["epochs"],
@@ -123,9 +117,9 @@ def main(args):
devices=-1 if torch.cuda.is_available() else 1,
benchmark=False,
fast_dev_run=False,
strategy = DDPStrategy(
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
) if torch.cuda.is_available() else "auto",
strategy=DDPStrategy(process_group_backend="nccl" if platform.system() != "Windows" else "gloo")
if torch.cuda.is_available()
else "auto",
precision=config["train"]["precision"],
logger=logger,
num_sanity_val_steps=0,
@@ -133,9 +127,7 @@ def main(args):
use_distributed_sampler=False, # 非常简单的修改,但解决了采用自定义的 bucket_sampler 下训练步数不一致的问题!
)
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
config, output_dir
)
model: Text2SemanticLightningModule = Text2SemanticLightningModule(config, output_dir)
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
config,