Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -42,12 +42,8 @@ class LayerNorm(nn.Module):
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
@@ -74,15 +70,10 @@ class LayerNorm(nn.Module):
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(
|
||||
input, self.normalized_shape, self.weight, self.bias, self.eps
|
||||
)
|
||||
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"{normalized_shape}, eps={eps}, "
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
)
|
||||
return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
@@ -121,6 +112,7 @@ class TransformerEncoder(nn.Module):
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
@@ -218,13 +210,9 @@ class TransformerEncoderLayer(nn.Module):
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(
|
||||
d_model, dim_feedforward, **factory_kwargs
|
||||
)
|
||||
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(
|
||||
dim_feedforward, d_model, **factory_kwargs
|
||||
)
|
||||
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
@@ -291,12 +279,8 @@ class TransformerEncoderLayer(nn.Module):
|
||||
|
||||
if src_key_padding_mask is not None:
|
||||
_skpm_dtype = src_key_padding_mask.dtype
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
src_key_padding_mask
|
||||
):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(src_key_padding_mask):
|
||||
raise AssertionError("only bool and floating types of key_padding_mask are supported")
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self._sa_block(
|
||||
|
||||
Reference in New Issue
Block a user