Refactor: Format Code with Ruff and Update Deprecated G2PW Link (#2255)
* ruff check --fix * ruff format --line-length 120 --target-version py39 * Change the link for G2PW Model * update pytorch version and colab
This commit is contained in:
@@ -13,12 +13,9 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import math
|
||||
import random
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -61,9 +58,7 @@ class DoubleSwishFunction(torch.autograd.Function):
|
||||
# floors), should be expectation-preserving.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
|
||||
deriv
|
||||
)
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(deriv)
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
@@ -153,13 +148,9 @@ def _compute_scale_factor(
|
||||
else:
|
||||
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
||||
# x_abs)_mean , min_abs.
|
||||
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
||||
min=0, max=max_factor
|
||||
)
|
||||
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(min=0, max=max_factor)
|
||||
|
||||
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
||||
min=0, max=max_factor
|
||||
)
|
||||
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(min=0, max=max_factor)
|
||||
|
||||
return below_threshold - above_threshold
|
||||
|
||||
@@ -181,18 +172,16 @@ def _compute_sign_factor(
|
||||
else:
|
||||
# 0 if proportion_positive >= min_positive, else can be
|
||||
# as large as max_factor.
|
||||
factor1 = (
|
||||
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
||||
).clamp_(min=0, max=max_factor)
|
||||
factor1 = ((min_positive - proportion_positive) * (gain_factor / min_positive)).clamp_(min=0, max=max_factor)
|
||||
|
||||
if max_positive == 1.0:
|
||||
factor2 = 0.0
|
||||
else:
|
||||
# 0 if self.proportion_positive <= max_positive, else can be
|
||||
# as large as -max_factor.
|
||||
factor2 = (
|
||||
(proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
|
||||
).clamp_(min=0, max=max_factor)
|
||||
factor2 = ((proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))).clamp_(
|
||||
min=0, max=max_factor
|
||||
)
|
||||
sign_factor = factor1 - factor2
|
||||
# require min_positive != 0 or max_positive != 1:
|
||||
assert not isinstance(sign_factor, float)
|
||||
@@ -320,15 +309,11 @@ class ActivationBalancer(torch.nn.Module):
|
||||
return _no_op(x)
|
||||
|
||||
|
||||
def BalancedDoubleSwish(
|
||||
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
||||
) -> nn.Sequential:
|
||||
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25) -> nn.Sequential:
|
||||
"""
|
||||
ActivationBalancer -> DoubleSwish
|
||||
"""
|
||||
balancer = ActivationBalancer(
|
||||
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
||||
)
|
||||
balancer = ActivationBalancer(d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
|
||||
return nn.Sequential(
|
||||
balancer,
|
||||
DoubleSwish(),
|
||||
|
||||
Reference in New Issue
Block a user