Add files via upload
This commit is contained in:
15
GPT_SoVITS/text/__init__.py
Normal file
15
GPT_SoVITS/text/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from text.symbols import *
|
||||
|
||||
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
||||
return phones
|
||||
|
||||
167
GPT_SoVITS/text/chinese.py
Normal file
167
GPT_SoVITS/text/chinese.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import os
|
||||
import pdb
|
||||
import re
|
||||
|
||||
import cn2an
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
import sys
|
||||
sys.path.append("/data/docker/liujing04/gpt-vits/gpt-vits-master")
|
||||
|
||||
from text.symbols import punctuation
|
||||
from text.tone_sandhi import ToneSandhi
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in
|
||||
open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()}
|
||||
|
||||
import jieba.posseg as psg
|
||||
|
||||
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…',
|
||||
'$': '.',
|
||||
'/': ',',
|
||||
'—': "-"
|
||||
}
|
||||
|
||||
tone_modifier = ToneSandhi()
|
||||
|
||||
def replace_punctuation(text):
|
||||
text = text.replace("嗯", "恩").replace("呣","母")
|
||||
pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text)
|
||||
|
||||
return replaced_text
|
||||
|
||||
def g2p(text):
|
||||
pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation))
|
||||
sentences = [i for i in re.split(pattern, text) if i.strip()!='']
|
||||
phones, word2ph = _g2p(sentences)
|
||||
return phones, word2ph
|
||||
|
||||
|
||||
def _get_initials_finals(word):
|
||||
initials = []
|
||||
finals = []
|
||||
orig_initials = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||||
orig_finals = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for c, v in zip(orig_initials, orig_finals):
|
||||
initials.append(c)
|
||||
finals.append(v)
|
||||
return initials, finals
|
||||
|
||||
|
||||
def _g2p(segments):
|
||||
phones_list = []
|
||||
word2ph = []
|
||||
for seg in segments:
|
||||
pinyins = []
|
||||
# Replace all English words in the sentence
|
||||
seg = re.sub('[a-zA-Z]+', '', seg)
|
||||
seg_cut = psg.lcut(seg)
|
||||
initials = []
|
||||
finals = []
|
||||
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
||||
for word, pos in seg_cut:
|
||||
if pos == 'eng':
|
||||
continue
|
||||
sub_initials, sub_finals = _get_initials_finals(word)
|
||||
sub_finals = tone_modifier.modified_tone(word, pos,
|
||||
sub_finals)
|
||||
initials.append(sub_initials)
|
||||
finals.append(sub_finals)
|
||||
|
||||
# assert len(sub_initials) == len(sub_finals) == len(word)
|
||||
initials = sum(initials, [])
|
||||
finals = sum(finals, [])
|
||||
#
|
||||
for c, v in zip(initials, finals):
|
||||
raw_pinyin = c+v
|
||||
# NOTE: post process for pypinyin outputs
|
||||
# we discriminate i, ii and iii
|
||||
if c == v:
|
||||
assert c in punctuation
|
||||
phone = [c]
|
||||
word2ph.append(1)
|
||||
else:
|
||||
v_without_tone = v[:-1]
|
||||
tone = v[-1]
|
||||
|
||||
pinyin = c+v_without_tone
|
||||
assert tone in '12345'
|
||||
|
||||
if c:
|
||||
# 多音节
|
||||
v_rep_map = {
|
||||
"uei": 'ui',
|
||||
'iou': 'iu',
|
||||
'uen': 'un',
|
||||
}
|
||||
if v_without_tone in v_rep_map.keys():
|
||||
pinyin = c+v_rep_map[v_without_tone]
|
||||
else:
|
||||
# 单音节
|
||||
pinyin_rep_map = {
|
||||
'ing': 'ying',
|
||||
'i': 'yi',
|
||||
'in': 'yin',
|
||||
'u': 'wu',
|
||||
}
|
||||
if pinyin in pinyin_rep_map.keys():
|
||||
pinyin = pinyin_rep_map[pinyin]
|
||||
else:
|
||||
single_rep_map = {
|
||||
'v': 'yu',
|
||||
'e': 'e',
|
||||
'i': 'y',
|
||||
'u': 'w',
|
||||
}
|
||||
if pinyin[0] in single_rep_map.keys():
|
||||
pinyin = single_rep_map[pinyin[0]]+pinyin[1:]
|
||||
|
||||
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
||||
new_c, new_v = pinyin_to_symbol_map[pinyin].split(' ')
|
||||
new_v = new_v + tone
|
||||
phone = [new_c, new_v]
|
||||
word2ph.append(len(phone))
|
||||
|
||||
phones_list += phone
|
||||
return phones_list, word2ph
|
||||
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
||||
for number in numbers:
|
||||
text = text.replace(number, cn2an.an2cn(number), 1)
|
||||
text = replace_punctuation(text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
text = "啊——但是《原神》是由,米哈\游自主,研发的一款全.新开放世界.冒险游戏"
|
||||
text = "呣呣呣~就是…大人的鼹鼠党吧?"
|
||||
text = "你好"
|
||||
text = text_normalize(text)
|
||||
print(g2p(text))
|
||||
|
||||
|
||||
# # 示例用法
|
||||
# text = "这是一个示例文本:,你好!这是一个测试..."
|
||||
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
||||
57
GPT_SoVITS/text/cleaner.py
Normal file
57
GPT_SoVITS/text/cleaner.py
Normal file
@@ -0,0 +1,57 @@
|
||||
from text import chinese, japanese, cleaned_text_to_sequence, symbols, english
|
||||
|
||||
language_module_map = {
|
||||
'zh': chinese,
|
||||
"ja": japanese,
|
||||
'en': english
|
||||
}
|
||||
special = [
|
||||
('%', 'zh', "SP"),
|
||||
('¥', 'zh', "SP2"),
|
||||
('^', 'zh', "SP3"),
|
||||
# ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧
|
||||
]
|
||||
def clean_text(text, language):
|
||||
for special_s, special_l, target_symbol in special:
|
||||
if special_s in text and language == special_l:
|
||||
return clean_special(text, language, special_s, target_symbol)
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
if(language=="zh"):
|
||||
phones, word2ph = language_module.g2p(norm_text)
|
||||
assert len(phones) == sum(word2ph)
|
||||
assert len(norm_text) == len(word2ph)
|
||||
else:
|
||||
phones = language_module.g2p(norm_text)
|
||||
word2ph=None
|
||||
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def clean_special(text, language, special_s, target_symbol):
|
||||
"""
|
||||
特殊静音段sp符号处理
|
||||
"""
|
||||
text = text.replace(special_s, ",")
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
phones = language_module.g2p(norm_text)
|
||||
new_ph = []
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
if ph == ',':
|
||||
new_ph.append(target_symbol)
|
||||
else:
|
||||
new_ph.append(ph)
|
||||
return new_ph
|
||||
|
||||
def text_to_sequence(text, language):
|
||||
phones = clean_text(text)
|
||||
return cleaned_text_to_sequence(phones)
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(clean_text("你好%啊啊啊额、还是到付红四方。", 'zh'))
|
||||
|
||||
|
||||
129530
GPT_SoVITS/text/cmudict.rep
Normal file
129530
GPT_SoVITS/text/cmudict.rep
Normal file
File diff suppressed because it is too large
Load Diff
BIN
GPT_SoVITS/text/cmudict_cache.pickle
Normal file
BIN
GPT_SoVITS/text/cmudict_cache.pickle
Normal file
Binary file not shown.
109
GPT_SoVITS/text/english.py
Normal file
109
GPT_SoVITS/text/english.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import pickle
|
||||
import os
|
||||
import re
|
||||
from g2p_en import G2p
|
||||
|
||||
from string import punctuation
|
||||
|
||||
from text import symbols
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep')
|
||||
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle')
|
||||
_g2p = G2p()
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
|
||||
|
||||
def replace_phs(phs):
|
||||
rep_map = {
|
||||
';': ',',
|
||||
':': ',',
|
||||
'\'': '-',
|
||||
'"': '-'
|
||||
}
|
||||
phs_new = []
|
||||
for ph in phs:
|
||||
if ph in symbols:
|
||||
phs_new.append(ph)
|
||||
elif ph in rep_map.keys():
|
||||
phs_new.append(rep_map[ph])
|
||||
else:
|
||||
print('ph not in symbols: ', ph)
|
||||
return phs_new
|
||||
|
||||
def read_dict():
|
||||
g2p_dict = {}
|
||||
start_line = 49
|
||||
with open(CMU_DICT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= start_line:
|
||||
line = line.strip()
|
||||
word_split = line.split(' ')
|
||||
word = word_split[0]
|
||||
|
||||
syllable_split = word_split[1].split(' - ')
|
||||
g2p_dict[word] = []
|
||||
for syllable in syllable_split:
|
||||
phone_split = syllable.split(' ')
|
||||
g2p_dict[word].append(phone_split)
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def cache_dict(g2p_dict, file_path):
|
||||
with open(file_path, 'wb') as pickle_file:
|
||||
pickle.dump(g2p_dict, pickle_file)
|
||||
|
||||
|
||||
def get_dict():
|
||||
if os.path.exists(CACHE_PATH):
|
||||
with open(CACHE_PATH, 'rb') as pickle_file:
|
||||
g2p_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
g2p_dict = read_dict()
|
||||
cache_dict(g2p_dict, CACHE_PATH)
|
||||
|
||||
return g2p_dict
|
||||
|
||||
eng_dict = get_dict()
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: eng text normalize
|
||||
return text.replace(";", ",")
|
||||
|
||||
def g2p(text):
|
||||
|
||||
phones = []
|
||||
words = re.split(r"([,;.\-\?\!\s+])", text)
|
||||
for w in words:
|
||||
if w.upper() in eng_dict:
|
||||
phns = eng_dict[w.upper()]
|
||||
for ph in phns:
|
||||
phones += ph
|
||||
else:
|
||||
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
||||
for ph in phone_list:
|
||||
if ph in arpa:
|
||||
phones.append(ph)
|
||||
else:
|
||||
phones.append(ph)
|
||||
|
||||
return replace_phs(phones)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(get_dict())
|
||||
print(g2p("hello"))
|
||||
print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
||||
# all_phones = set()
|
||||
# for k, syllables in eng_dict.items():
|
||||
# for group in syllables:
|
||||
# for ph in group:
|
||||
# all_phones.add(ph)
|
||||
# print(all_phones)
|
||||
98
GPT_SoVITS/text/japanese.py
Normal file
98
GPT_SoVITS/text/japanese.py
Normal file
@@ -0,0 +1,98 @@
|
||||
# modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
|
||||
import re
|
||||
import sys
|
||||
|
||||
import pyopenjtalk
|
||||
|
||||
from text import symbols
|
||||
|
||||
# Regular expression matching Japanese without punctuation marks:
|
||||
_japanese_characters = re.compile(
|
||||
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# Regular expression matching non-Japanese characters or punctuation marks:
|
||||
_japanese_marks = re.compile(
|
||||
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# List of (symbol, Japanese) pairs for marks:
|
||||
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('%', 'パーセント')
|
||||
]]
|
||||
|
||||
|
||||
# List of (consonant, sokuon) pairs:
|
||||
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'Q([↑↓]*[kg])', r'k#\1'),
|
||||
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
||||
(r'Q([↑↓]*[sʃ])', r's\1'),
|
||||
(r'Q([↑↓]*[pb])', r'p#\1')
|
||||
]]
|
||||
|
||||
# List of (consonant, hatsuon) pairs:
|
||||
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'N([↑↓]*[pbm])', r'm\1'),
|
||||
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
||||
(r'N([↑↓]*[tdn])', r'n\1'),
|
||||
(r'N([↑↓]*[kg])', r'ŋ\1')
|
||||
]]
|
||||
|
||||
|
||||
|
||||
def post_replace_ph(ph):
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…'
|
||||
}
|
||||
if ph in rep_map.keys():
|
||||
ph = rep_map[ph]
|
||||
if ph in symbols:
|
||||
return ph
|
||||
if ph not in symbols:
|
||||
ph = 'UNK'
|
||||
return ph
|
||||
|
||||
def symbols_to_japanese(text):
|
||||
for regex, replacement in _symbols_to_japanese:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def preprocess_jap(text):
|
||||
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
||||
text = symbols_to_japanese(text)
|
||||
sentences = re.split(_japanese_marks, text)
|
||||
marks = re.findall(_japanese_marks, text)
|
||||
text = []
|
||||
for i, sentence in enumerate(sentences):
|
||||
if re.match(_japanese_characters, sentence):
|
||||
p = pyopenjtalk.g2p(sentence)
|
||||
text += p.split(" ")
|
||||
|
||||
if i < len(marks):
|
||||
text += [marks[i].replace(' ', '')]
|
||||
return text
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: jap text normalize
|
||||
return text
|
||||
|
||||
def g2p(norm_text):
|
||||
phones = preprocess_jap(norm_text)
|
||||
phones = [post_replace_ph(i) for i in phones]
|
||||
# todo: implement tones and word2ph
|
||||
return phones
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
for line in open("../../../Downloads/transcript_utf8.txt").readlines():
|
||||
text = line.split(":")[1]
|
||||
phones = g2p(text)
|
||||
print(phones)
|
||||
429
GPT_SoVITS/text/opencpop-strict.txt
Normal file
429
GPT_SoVITS/text/opencpop-strict.txt
Normal file
@@ -0,0 +1,429 @@
|
||||
a AA a
|
||||
ai AA ai
|
||||
an AA an
|
||||
ang AA ang
|
||||
ao AA ao
|
||||
ba b a
|
||||
bai b ai
|
||||
ban b an
|
||||
bang b ang
|
||||
bao b ao
|
||||
bei b ei
|
||||
ben b en
|
||||
beng b eng
|
||||
bi b i
|
||||
bian b ian
|
||||
biao b iao
|
||||
bie b ie
|
||||
bin b in
|
||||
bing b ing
|
||||
bo b o
|
||||
bu b u
|
||||
ca c a
|
||||
cai c ai
|
||||
can c an
|
||||
cang c ang
|
||||
cao c ao
|
||||
ce c e
|
||||
cei c ei
|
||||
cen c en
|
||||
ceng c eng
|
||||
cha ch a
|
||||
chai ch ai
|
||||
chan ch an
|
||||
chang ch ang
|
||||
chao ch ao
|
||||
che ch e
|
||||
chen ch en
|
||||
cheng ch eng
|
||||
chi ch ir
|
||||
chong ch ong
|
||||
chou ch ou
|
||||
chu ch u
|
||||
chua ch ua
|
||||
chuai ch uai
|
||||
chuan ch uan
|
||||
chuang ch uang
|
||||
chui ch ui
|
||||
chun ch un
|
||||
chuo ch uo
|
||||
ci c i0
|
||||
cong c ong
|
||||
cou c ou
|
||||
cu c u
|
||||
cuan c uan
|
||||
cui c ui
|
||||
cun c un
|
||||
cuo c uo
|
||||
da d a
|
||||
dai d ai
|
||||
dan d an
|
||||
dang d ang
|
||||
dao d ao
|
||||
de d e
|
||||
dei d ei
|
||||
den d en
|
||||
deng d eng
|
||||
di d i
|
||||
dia d ia
|
||||
dian d ian
|
||||
diao d iao
|
||||
die d ie
|
||||
ding d ing
|
||||
diu d iu
|
||||
dong d ong
|
||||
dou d ou
|
||||
du d u
|
||||
duan d uan
|
||||
dui d ui
|
||||
dun d un
|
||||
duo d uo
|
||||
e EE e
|
||||
ei EE ei
|
||||
en EE en
|
||||
eng EE eng
|
||||
er EE er
|
||||
fa f a
|
||||
fan f an
|
||||
fang f ang
|
||||
fei f ei
|
||||
fen f en
|
||||
feng f eng
|
||||
fo f o
|
||||
fou f ou
|
||||
fu f u
|
||||
ga g a
|
||||
gai g ai
|
||||
gan g an
|
||||
gang g ang
|
||||
gao g ao
|
||||
ge g e
|
||||
gei g ei
|
||||
gen g en
|
||||
geng g eng
|
||||
gong g ong
|
||||
gou g ou
|
||||
gu g u
|
||||
gua g ua
|
||||
guai g uai
|
||||
guan g uan
|
||||
guang g uang
|
||||
gui g ui
|
||||
gun g un
|
||||
guo g uo
|
||||
ha h a
|
||||
hai h ai
|
||||
han h an
|
||||
hang h ang
|
||||
hao h ao
|
||||
he h e
|
||||
hei h ei
|
||||
hen h en
|
||||
heng h eng
|
||||
hong h ong
|
||||
hou h ou
|
||||
hu h u
|
||||
hua h ua
|
||||
huai h uai
|
||||
huan h uan
|
||||
huang h uang
|
||||
hui h ui
|
||||
hun h un
|
||||
huo h uo
|
||||
ji j i
|
||||
jia j ia
|
||||
jian j ian
|
||||
jiang j iang
|
||||
jiao j iao
|
||||
jie j ie
|
||||
jin j in
|
||||
jing j ing
|
||||
jiong j iong
|
||||
jiu j iu
|
||||
ju j v
|
||||
jv j v
|
||||
juan j van
|
||||
jvan j van
|
||||
jue j ve
|
||||
jve j ve
|
||||
jun j vn
|
||||
jvn j vn
|
||||
ka k a
|
||||
kai k ai
|
||||
kan k an
|
||||
kang k ang
|
||||
kao k ao
|
||||
ke k e
|
||||
kei k ei
|
||||
ken k en
|
||||
keng k eng
|
||||
kong k ong
|
||||
kou k ou
|
||||
ku k u
|
||||
kua k ua
|
||||
kuai k uai
|
||||
kuan k uan
|
||||
kuang k uang
|
||||
kui k ui
|
||||
kun k un
|
||||
kuo k uo
|
||||
la l a
|
||||
lai l ai
|
||||
lan l an
|
||||
lang l ang
|
||||
lao l ao
|
||||
le l e
|
||||
lei l ei
|
||||
leng l eng
|
||||
li l i
|
||||
lia l ia
|
||||
lian l ian
|
||||
liang l iang
|
||||
liao l iao
|
||||
lie l ie
|
||||
lin l in
|
||||
ling l ing
|
||||
liu l iu
|
||||
lo l o
|
||||
long l ong
|
||||
lou l ou
|
||||
lu l u
|
||||
luan l uan
|
||||
lun l un
|
||||
luo l uo
|
||||
lv l v
|
||||
lve l ve
|
||||
ma m a
|
||||
mai m ai
|
||||
man m an
|
||||
mang m ang
|
||||
mao m ao
|
||||
me m e
|
||||
mei m ei
|
||||
men m en
|
||||
meng m eng
|
||||
mi m i
|
||||
mian m ian
|
||||
miao m iao
|
||||
mie m ie
|
||||
min m in
|
||||
ming m ing
|
||||
miu m iu
|
||||
mo m o
|
||||
mou m ou
|
||||
mu m u
|
||||
na n a
|
||||
nai n ai
|
||||
nan n an
|
||||
nang n ang
|
||||
nao n ao
|
||||
ne n e
|
||||
nei n ei
|
||||
nen n en
|
||||
neng n eng
|
||||
ni n i
|
||||
nian n ian
|
||||
niang n iang
|
||||
niao n iao
|
||||
nie n ie
|
||||
nin n in
|
||||
ning n ing
|
||||
niu n iu
|
||||
nong n ong
|
||||
nou n ou
|
||||
nu n u
|
||||
nuan n uan
|
||||
nun n un
|
||||
nuo n uo
|
||||
nv n v
|
||||
nve n ve
|
||||
o OO o
|
||||
ou OO ou
|
||||
pa p a
|
||||
pai p ai
|
||||
pan p an
|
||||
pang p ang
|
||||
pao p ao
|
||||
pei p ei
|
||||
pen p en
|
||||
peng p eng
|
||||
pi p i
|
||||
pian p ian
|
||||
piao p iao
|
||||
pie p ie
|
||||
pin p in
|
||||
ping p ing
|
||||
po p o
|
||||
pou p ou
|
||||
pu p u
|
||||
qi q i
|
||||
qia q ia
|
||||
qian q ian
|
||||
qiang q iang
|
||||
qiao q iao
|
||||
qie q ie
|
||||
qin q in
|
||||
qing q ing
|
||||
qiong q iong
|
||||
qiu q iu
|
||||
qu q v
|
||||
qv q v
|
||||
quan q van
|
||||
qvan q van
|
||||
que q ve
|
||||
qve q ve
|
||||
qun q vn
|
||||
qvn q vn
|
||||
ran r an
|
||||
rang r ang
|
||||
rao r ao
|
||||
re r e
|
||||
ren r en
|
||||
reng r eng
|
||||
ri r ir
|
||||
rong r ong
|
||||
rou r ou
|
||||
ru r u
|
||||
rua r ua
|
||||
ruan r uan
|
||||
rui r ui
|
||||
run r un
|
||||
ruo r uo
|
||||
sa s a
|
||||
sai s ai
|
||||
san s an
|
||||
sang s ang
|
||||
sao s ao
|
||||
se s e
|
||||
sen s en
|
||||
seng s eng
|
||||
sha sh a
|
||||
shai sh ai
|
||||
shan sh an
|
||||
shang sh ang
|
||||
shao sh ao
|
||||
she sh e
|
||||
shei sh ei
|
||||
shen sh en
|
||||
sheng sh eng
|
||||
shi sh ir
|
||||
shou sh ou
|
||||
shu sh u
|
||||
shua sh ua
|
||||
shuai sh uai
|
||||
shuan sh uan
|
||||
shuang sh uang
|
||||
shui sh ui
|
||||
shun sh un
|
||||
shuo sh uo
|
||||
si s i0
|
||||
song s ong
|
||||
sou s ou
|
||||
su s u
|
||||
suan s uan
|
||||
sui s ui
|
||||
sun s un
|
||||
suo s uo
|
||||
ta t a
|
||||
tai t ai
|
||||
tan t an
|
||||
tang t ang
|
||||
tao t ao
|
||||
te t e
|
||||
tei t ei
|
||||
teng t eng
|
||||
ti t i
|
||||
tian t ian
|
||||
tiao t iao
|
||||
tie t ie
|
||||
ting t ing
|
||||
tong t ong
|
||||
tou t ou
|
||||
tu t u
|
||||
tuan t uan
|
||||
tui t ui
|
||||
tun t un
|
||||
tuo t uo
|
||||
wa w a
|
||||
wai w ai
|
||||
wan w an
|
||||
wang w ang
|
||||
wei w ei
|
||||
wen w en
|
||||
weng w eng
|
||||
wo w o
|
||||
wu w u
|
||||
xi x i
|
||||
xia x ia
|
||||
xian x ian
|
||||
xiang x iang
|
||||
xiao x iao
|
||||
xie x ie
|
||||
xin x in
|
||||
xing x ing
|
||||
xiong x iong
|
||||
xiu x iu
|
||||
xu x v
|
||||
xv x v
|
||||
xuan x van
|
||||
xvan x van
|
||||
xue x ve
|
||||
xve x ve
|
||||
xun x vn
|
||||
xvn x vn
|
||||
ya y a
|
||||
yan y En
|
||||
yang y ang
|
||||
yao y ao
|
||||
ye y E
|
||||
yi y i
|
||||
yin y in
|
||||
ying y ing
|
||||
yo y o
|
||||
yong y ong
|
||||
you y ou
|
||||
yu y v
|
||||
yv y v
|
||||
yuan y van
|
||||
yvan y van
|
||||
yue y ve
|
||||
yve y ve
|
||||
yun y vn
|
||||
yvn y vn
|
||||
za z a
|
||||
zai z ai
|
||||
zan z an
|
||||
zang z ang
|
||||
zao z ao
|
||||
ze z e
|
||||
zei z ei
|
||||
zen z en
|
||||
zeng z eng
|
||||
zha zh a
|
||||
zhai zh ai
|
||||
zhan zh an
|
||||
zhang zh ang
|
||||
zhao zh ao
|
||||
zhe zh e
|
||||
zhei zh ei
|
||||
zhen zh en
|
||||
zheng zh eng
|
||||
zhi zh ir
|
||||
zhong zh ong
|
||||
zhou zh ou
|
||||
zhu zh u
|
||||
zhua zh ua
|
||||
zhuai zh uai
|
||||
zhuan zh uan
|
||||
zhuang zh uang
|
||||
zhui zh ui
|
||||
zhun zh un
|
||||
zhuo zh uo
|
||||
zi z i0
|
||||
zong z ong
|
||||
zou z ou
|
||||
zu z u
|
||||
zuan z uan
|
||||
zui z ui
|
||||
zun z un
|
||||
zuo z uo
|
||||
24
GPT_SoVITS/text/symbols.py
Normal file
24
GPT_SoVITS/text/symbols.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
# punctuation = ['!', '?', '…', ",", ".","@"]#@是SP停顿
|
||||
punctuation = ['!', '?', '…', ",", "."]#@是SP停顿
|
||||
punctuation.append("-")
|
||||
pu_symbols = punctuation + ["SP", 'SP2', 'SP3', "UNK"]
|
||||
# pu_symbols = punctuation + ["SP", 'SP2', 'SP3','SP4', "UNK"]
|
||||
pad = '_'
|
||||
|
||||
c = ['AA', 'EE', 'OO', 'b', 'c', 'ch', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 'sh', 't', 'w', 'x', 'y', 'z', 'zh']
|
||||
v = ['E1', 'En1', 'a1', 'ai1', 'an1', 'ang1', 'ao1', 'e1', 'ei1', 'en1', 'eng1', 'er1', 'i1', 'i01', 'ia1', 'ian1', 'iang1', 'iao1', 'ie1', 'in1', 'ing1', 'iong1', 'ir1', 'iu1', 'o1', 'ong1', 'ou1', 'u1', 'ua1', 'uai1', 'uan1', 'uang1', 'ui1', 'un1', 'uo1', 'v1', 'van1', 've1', 'vn1', 'E2', 'En2', 'a2', 'ai2', 'an2', 'ang2', 'ao2', 'e2', 'ei2', 'en2', 'eng2', 'er2', 'i2', 'i02', 'ia2', 'ian2', 'iang2', 'iao2', 'ie2', 'in2', 'ing2', 'iong2', 'ir2', 'iu2', 'o2', 'ong2', 'ou2', 'u2', 'ua2', 'uai2', 'uan2', 'uang2', 'ui2', 'un2', 'uo2', 'v2', 'van2', 've2', 'vn2', 'E3', 'En3', 'a3', 'ai3', 'an3', 'ang3', 'ao3', 'e3', 'ei3', 'en3', 'eng3', 'er3', 'i3', 'i03', 'ia3', 'ian3', 'iang3', 'iao3', 'ie3', 'in3', 'ing3', 'iong3', 'ir3', 'iu3', 'o3', 'ong3', 'ou3', 'u3', 'ua3', 'uai3', 'uan3', 'uang3', 'ui3', 'un3', 'uo3', 'v3', 'van3', 've3', 'vn3', 'E4', 'En4', 'a4', 'ai4', 'an4', 'ang4', 'ao4', 'e4', 'ei4', 'en4', 'eng4', 'er4', 'i4', 'i04', 'ia4', 'ian4', 'iang4', 'iao4', 'ie4', 'in4', 'ing4', 'iong4', 'ir4', 'iu4', 'o4', 'ong4', 'ou4', 'u4', 'ua4', 'uai4', 'uan4', 'uang4', 'ui4', 'un4', 'uo4', 'v4', 'van4', 've4', 'vn4', 'E5', 'En5', 'a5', 'ai5', 'an5', 'ang5', 'ao5', 'e5', 'ei5', 'en5', 'eng5', 'er5', 'i5', 'i05', 'ia5', 'ian5', 'iang5', 'iao5', 'ie5', 'in5', 'ing5', 'iong5', 'ir5', 'iu5', 'o5', 'ong5', 'ou5', 'u5', 'ua5', 'uai5', 'uan5', 'uang5', 'ui5', 'un5', 'uo5', 'v5', 'van5', 've5', 'vn5']
|
||||
|
||||
v_without_tone = ['E', 'En', 'a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'i0', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'ir', 'iu', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn']
|
||||
|
||||
# japanese
|
||||
ja_symbols = ['I', 'N', 'U', 'a', 'b', 'by', 'ch', 'cl', 'd', 'dy', 'e', 'f', 'g', 'gy', 'h', 'hy', 'i', 'j', 'k', 'ky',
|
||||
'm', 'my', 'n', 'ny', 'o', 'p', 'py', 'r', 'ry', 's', 'sh', 't', 'ts', 'u', 'v', 'w', 'y', 'z']
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
|
||||
symbols = [pad] + c + v + ja_symbols + pu_symbols + list(arpa)
|
||||
symbols = sorted(set(symbols))
|
||||
if __name__ == '__main__':
|
||||
print(len(symbols))
|
||||
358
GPT_SoVITS/text/tone_sandhi.py
Normal file
358
GPT_SoVITS/text/tone_sandhi.py
Normal file
@@ -0,0 +1,358 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin
|
||||
from pypinyin import Style
|
||||
|
||||
|
||||
class ToneSandhi():
|
||||
def __init__(self):
|
||||
self.must_neural_tone_words = {
|
||||
'麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝',
|
||||
'难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊',
|
||||
'里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去',
|
||||
'软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号',
|
||||
'认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当',
|
||||
'蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻',
|
||||
'舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂',
|
||||
'胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆',
|
||||
'老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂',
|
||||
'精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿',
|
||||
'窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台',
|
||||
'码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算',
|
||||
'白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨',
|
||||
'琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快',
|
||||
'爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜',
|
||||
'溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔',
|
||||
'棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事',
|
||||
'木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾',
|
||||
'收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼',
|
||||
'抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实',
|
||||
'扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头',
|
||||
'念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼',
|
||||
'干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数',
|
||||
'屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气',
|
||||
'实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈',
|
||||
'姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方',
|
||||
'大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴',
|
||||
'嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦',
|
||||
'咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝',
|
||||
'叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹',
|
||||
'功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息',
|
||||
'凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
|
||||
'佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
|
||||
'交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
|
||||
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
|
||||
'父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
|
||||
'幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
|
||||
'凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
|
||||
'扫把', '惦记'
|
||||
}
|
||||
self.must_not_neural_tone_words = {
|
||||
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
|
||||
}
|
||||
self.punc = ":,;。?!“”‘’':,;.?!"
|
||||
|
||||
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
||||
# e.g.
|
||||
# word: "家里"
|
||||
# pos: "s"
|
||||
# finals: ['ia1', 'i3']
|
||||
def _neural_sandhi(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
|
||||
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
||||
for j, item in enumerate(word):
|
||||
if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
|
||||
"n", "v", "a"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
finals[j] = finals[j][:-1] + "5"
|
||||
ge_idx = word.find("个")
|
||||
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) >= 1 and word[-1] in "的地得":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 走了, 看着, 去过
|
||||
elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) > 1 and word[-1] in "们子" and pos in {
|
||||
"r", "n"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 桌上, 地下, 家里
|
||||
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 上来, 下去
|
||||
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# 个做量词
|
||||
elif (ge_idx >= 1 and
|
||||
(word[ge_idx - 1].isnumeric() or
|
||||
word[ge_idx - 1] in "几有两半多各整每做是")) or word == '个':
|
||||
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
||||
else:
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
|
||||
word_list = self._split_word(word)
|
||||
finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
|
||||
for i, word in enumerate(word_list):
|
||||
# conventional neural in Chinese
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
||||
finals = sum(finals_list, [])
|
||||
return finals
|
||||
|
||||
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# e.g. 看不懂
|
||||
if len(word) == 3 and word[1] == "不":
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
# "不" before tone4 should be bu2, e.g. 不怕
|
||||
if char == "不" and i + 1 < len(word) and finals[i +
|
||||
1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
return finals
|
||||
|
||||
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# "一" in number sequences, e.g. 一零零, 二一零
|
||||
if word.find("一") != -1 and all(
|
||||
[item.isnumeric() for item in word if item != "一"]):
|
||||
return finals
|
||||
# "一" between reduplication words shold be yi5, e.g. 看一看
|
||||
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
# when "一" is ordinal word, it should be yi1
|
||||
elif word.startswith("第一"):
|
||||
finals[1] = finals[1][:-1] + "1"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
if char == "一" and i + 1 < len(word):
|
||||
# "一" before tone4 should be yi2, e.g. 一段
|
||||
if finals[i + 1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
# "一" before non-tone4 should be yi4, e.g. 一天
|
||||
else:
|
||||
# "一" 后面如果是标点,还读一声
|
||||
if word[i + 1] not in self.punc:
|
||||
finals[i] = finals[i][:-1] + "4"
|
||||
return finals
|
||||
|
||||
def _split_word(self, word: str) -> List[str]:
|
||||
word_list = jieba.cut_for_search(word)
|
||||
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
||||
first_subword = word_list[0]
|
||||
first_begin_idx = word.find(first_subword)
|
||||
if first_begin_idx == 0:
|
||||
second_subword = word[len(first_subword):]
|
||||
new_word_list = [first_subword, second_subword]
|
||||
else:
|
||||
second_subword = word[:-len(first_subword)]
|
||||
new_word_list = [second_subword, first_subword]
|
||||
return new_word_list
|
||||
|
||||
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
if len(word) == 2 and self._all_tone_three(finals):
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
elif len(word) == 3:
|
||||
word_list = self._split_word(word)
|
||||
if self._all_tone_three(finals):
|
||||
# disyllabic + monosyllabic, e.g. 蒙古/包
|
||||
if len(word_list[0]) == 2:
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
# monosyllabic + disyllabic, e.g. 纸/老虎
|
||||
elif len(word_list[0]) == 1:
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
else:
|
||||
finals_list = [
|
||||
finals[:len(word_list[0])], finals[len(word_list[0]):]
|
||||
]
|
||||
if len(finals_list) == 2:
|
||||
for i, sub in enumerate(finals_list):
|
||||
# e.g. 所有/人
|
||||
if self._all_tone_three(sub) and len(sub) == 2:
|
||||
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
||||
# e.g. 好/喜欢
|
||||
elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \
|
||||
finals_list[0][-1][-1] == "3":
|
||||
|
||||
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
||||
finals = sum(finals_list, [])
|
||||
# split idiom into two words who's length is 2
|
||||
elif len(word) == 4:
|
||||
finals_list = [finals[:2], finals[2:]]
|
||||
finals = []
|
||||
for sub in finals_list:
|
||||
if self._all_tone_three(sub):
|
||||
sub[0] = sub[0][:-1] + "2"
|
||||
finals += sub
|
||||
|
||||
return finals
|
||||
|
||||
def _all_tone_three(self, finals: List[str]) -> bool:
|
||||
return all(x[-1] == "3" for x in finals)
|
||||
|
||||
# merge "不" and the word behind it
|
||||
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
last_word = ""
|
||||
for word, pos in seg:
|
||||
if last_word == "不":
|
||||
word = last_word + word
|
||||
if word != "不":
|
||||
new_seg.append((word, pos))
|
||||
last_word = word[:]
|
||||
if last_word == "不":
|
||||
new_seg.append((last_word, 'd'))
|
||||
last_word = ""
|
||||
return new_seg
|
||||
|
||||
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
||||
# function 2: merge single "一" and the word behind it
|
||||
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
# e.g.
|
||||
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
||||
# output seg: [['听一听', 'v']]
|
||||
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
# function 1
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "一" and i + 1 < len(seg) and seg[i - 1][
|
||||
0] == seg[i + 1][0] and seg[i - 1][1] == "v":
|
||||
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
||||
else:
|
||||
if i - 2 >= 0 and seg[i - 1][0] == "一" and seg[i - 2][
|
||||
0] == word and pos == "v":
|
||||
continue
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
seg = new_seg
|
||||
new_seg = []
|
||||
# function 2
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and new_seg[-1][0] == "一":
|
||||
new_seg[-1][0] = new_seg[-1][0] + word
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
# the first and the second words are all_tone_three
|
||||
def _merge_continuous_three_tones(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and self._all_tone_three(
|
||||
sub_finals_list[i - 1]) and self._all_tone_three(
|
||||
sub_finals_list[i]) and not merge_last[i - 1]:
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
|
||||
return new_seg
|
||||
|
||||
def _is_reduplication(self, word: str) -> bool:
|
||||
return len(word) == 2 and word[0] == word[1]
|
||||
|
||||
# the last char of first word and the first char of second word is tone_three
|
||||
def _merge_continuous_three_tones_2(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
|
||||
merge_last[i - 1]:
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "儿" and seg[i-1][0] != "#":
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_reduplication(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and word == new_seg[-1][0]:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def pre_merge_for_modify(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
seg = self._merge_bu(seg)
|
||||
try:
|
||||
seg = self._merge_yi(seg)
|
||||
except:
|
||||
print("_merge_yi failed")
|
||||
seg = self._merge_reduplication(seg)
|
||||
try:
|
||||
seg = self._merge_continuous_three_tones(seg)
|
||||
except:
|
||||
print("_merge_continuous_three_tones failed")
|
||||
try:
|
||||
seg = self._merge_continuous_three_tones_2(seg)
|
||||
except:
|
||||
print("_merge_continuous_three_tones_2 failed")
|
||||
|
||||
seg = self._merge_er(seg)
|
||||
return seg
|
||||
|
||||
def modified_tone(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
finals = self._bu_sandhi(word, finals)
|
||||
finals = self._yi_sandhi(word, finals)
|
||||
finals = self._neural_sandhi(word, pos, finals)
|
||||
finals = self._three_sandhi(word, finals)
|
||||
return finals
|
||||
Reference in New Issue
Block a user