Add files via upload
This commit is contained in:
402
GPT_SoVITS/s2_train.py
Normal file
402
GPT_SoVITS/s2_train.py
Normal file
@@ -0,0 +1,402 @@
|
||||
import utils,os
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist,traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging,traceback
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
from random import randint
|
||||
from module import commons
|
||||
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import (
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
feature_loss,
|
||||
kl_loss
|
||||
)
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from process_ckpt import savee
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.set_float32_matmul_precision('medium')#最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
def main():
|
||||
"""Assume Single Node Multi GPUs Training Only"""
|
||||
assert torch.cuda.is_available(), "CPU training is not allowed."
|
||||
|
||||
n_gpus = torch.cuda.device_count()
|
||||
os.environ['MASTER_ADDR'] = 'localhost'
|
||||
os.environ['MASTER_PORT'] = str(randint(20000, 55555))
|
||||
|
||||
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
global global_step
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.data.exp_dir)
|
||||
logger.info(hps)
|
||||
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(backend='gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus,rank=rank)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data)########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[32, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(train_dataset, num_workers=6, shuffle=False, pin_memory=True,
|
||||
collate_fn=collate_fn, batch_sampler=train_sampler,persistent_workers=True,prefetch_factor=16)
|
||||
# if rank == 0:
|
||||
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
||||
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
||||
# batch_size=1, pin_memory=True,
|
||||
# drop_last=False, collate_fn=collate_fn)
|
||||
|
||||
net_g = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model).cuda(rank)
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
print(name,"not requires_grad")
|
||||
|
||||
te_p = list(map(id, net_g.enc_p.text_embedding.parameters()))
|
||||
et_p = list(map(id, net_g.enc_p.encoder_text.parameters()))
|
||||
mrte_p = list(map(id, net_g.enc_p.mrte.parameters()))
|
||||
base_params = filter(lambda p: id(p) not in te_p+et_p+mrte_p and p.requires_grad, net_g.parameters())
|
||||
|
||||
# te_p=net_g.enc_p.text_embedding.parameters()
|
||||
# et_p=net_g.enc_p.encoder_text.parameters()
|
||||
# mrte_p=net_g.enc_p.mrte.parameters()
|
||||
|
||||
optim_g = torch.optim.AdamW(
|
||||
# filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
|
||||
[
|
||||
{"params":base_params,"lr":hps.train.learning_rate},
|
||||
{"params":net_g.enc_p.text_embedding.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.encoder_text.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.mrte.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
],
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
optim_d = torch.optim.AdamW(
|
||||
net_d.parameters(),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True)
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "D_*.pth"), net_d, optim_d
|
||||
) # D多半加载没事
|
||||
if rank == 0:
|
||||
logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "G_*.pth"), net_g, optim_g
|
||||
)
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
# global_step = 0
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
if hps.train.pretrained_s2G != "":
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print(
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],strict=False
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
if hps.train.pretrained_s2D != "":
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
|
||||
print(
|
||||
net_d.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
|
||||
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None], logger, [writer, writer_eval])
|
||||
else:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
[train_loader, None], None, None)
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
|
||||
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
train_loader, eval_loader = loaders
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
net_d.train()
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad=False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(rank, non_blocking=True)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
y_hat, kl_ssl, ids_slice, x_mask, z_mask, \
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q), stats_ssl = net_g(ssl, spec, spec_lengths, text, text_lengths)
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
)
|
||||
|
||||
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
||||
loss_disc_all = loss_disc
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc_all).backward()
|
||||
scaler.unscale_(optim_d)
|
||||
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
||||
scaler.step(optim_d)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
# Generator
|
||||
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
||||
with autocast(enabled=False):
|
||||
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||
|
||||
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||
loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl
|
||||
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
||||
scalar_dict.update(
|
||||
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl_ssl": kl_ssl, "loss/g/kl": loss_kl})
|
||||
|
||||
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
||||
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
||||
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict)
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(global_step)),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(233333333333)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(233333333333)),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
logger.info(
|
||||
"saving ckpt %s_e%s:%s"
|
||||
% (
|
||||
hps.name,
|
||||
epoch,
|
||||
savee(
|
||||
ckpt,
|
||||
hps.name + "_e%s_s%s" % (epoch, global_step),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
|
||||
if rank == 0:
|
||||
logger.info('====> Epoch: {}'.format(epoch))
|
||||
|
||||
|
||||
|
||||
def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
generator.eval()
|
||||
image_dict = {}
|
||||
audio_dict = {}
|
||||
print("Evaluating ...")
|
||||
with torch.no_grad():
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in enumerate(eval_loader):
|
||||
print(111)
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
for test in [0, 1]:
|
||||
|
||||
y_hat, mask, *_ = generator.module.infer(ssl,spec, spec_lengths,text, text_lengths, test=test)
|
||||
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1).float(),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
)
|
||||
image_dict.update({
|
||||
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
||||
})
|
||||
audio_dict.update({
|
||||
f"gen/audio_{batch_idx}_{test}": y_hat[0, :, :y_hat_lengths[0]]
|
||||
})
|
||||
image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
||||
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})
|
||||
|
||||
# y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None)
|
||||
# audio_dict.update({
|
||||
# f"gen/audio_{batch_idx}_style_pred": y_hat[0, :, :]
|
||||
# })
|
||||
|
||||
utils.summarize(
|
||||
writer=writer_eval,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
audios=audio_dict,
|
||||
audio_sampling_rate=hps.data.sampling_rate
|
||||
)
|
||||
generator.train()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user