Add files via upload
This commit is contained in:
160
GPT_SoVITS/module/mrte_model.py
Normal file
160
GPT_SoVITS/module/mrte_model.py
Normal file
@@ -0,0 +1,160 @@
|
||||
# This is Multi-reference timbre encoder
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
from module.attentions import MultiHeadAttention
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer = 2
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size,out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
||||
if(ge==None):ge=0
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
if test != None:
|
||||
if test == 0:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
elif test == 1:
|
||||
x = ssl_enc + ge
|
||||
elif test ==2:
|
||||
x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
|
||||
else:
|
||||
raise ValueError("test should be 0,1,2")
|
||||
else:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
||||
|
||||
class SpeakerEncoder(torch.nn.Module):
|
||||
def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
|
||||
super(SpeakerEncoder, self).__init__()
|
||||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
||||
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, mels):
|
||||
self.lstm.flatten_parameters()
|
||||
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
|
||||
embeds_raw = self.relu(self.linear(hidden[-1]))
|
||||
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
||||
|
||||
|
||||
class MELEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# print(x.shape,x_lengths.shape)
|
||||
x = self.pre(x)
|
||||
x = self.enc(x)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
|
||||
acts = fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
n_channels_tensor)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts)
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
content_enc = torch.randn(3,192,100)
|
||||
content_mask = torch.ones(3,1,100)
|
||||
ref_mel = torch.randn(3,128,30)
|
||||
ref_mask = torch.ones(3,1,30)
|
||||
model = MRTE()
|
||||
out = model(content_enc,content_mask,ref_mel,ref_mask)
|
||||
print(out.shape)
|
||||
Reference in New Issue
Block a user