Add files via upload
This commit is contained in:
78
GPT_SoVITS/AR/modules/embedding.py
Normal file
78
GPT_SoVITS/AR/modules/embedding.py
Normal file
@@ -0,0 +1,78 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float=0.0, ):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index:index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float=0.0,
|
||||
scale: bool=False,
|
||||
alpha: bool=False, ):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
|
||||
self.reverse = False
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
||||
|
||||
def extend_pe(self, x):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.embedding_dim)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(
|
||||
0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
|
||||
-(math.log(10000.0) / self.embedding_dim))
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, :x.size(1)]
|
||||
return self.dropout(output)
|
||||
Reference in New Issue
Block a user