[fast_inference] 回退策略,减少padding影响,开放选项,同步代码 (#986)

* Update README

* Optimize-English-G2P

* docs: change akward expression

* docs: update Changelog_KO.md

* Fix CN punc in EN,add 's match

* Adjust normalize and g2p logic

* Update zh_CN.json

* Update README (#827)

Update README.md
Update some outdated file paths and commands

* 修复英文多音字,调整字典热加载,新增姓名匹配 (#869)

* Fix homograph dict

* Add JSON in dict

* Adjust hot dict to hot reload

* Add English name dict

* Adjust get name dict logic

* Make API Great Again (#894)

* Add zh/jp/en mix

* Optimize code readability and formatted output.

* Try OGG streaming

* Add stream mode arg

* Add media type arg

* Add cut punc arg

* Eliminate punc risk

* Update README (#895)

* Update README

* Update README

* update README

* update README

* fix typo s/Licence /License (#904)

* fix reformat cmd (#917)

Co-authored-by: starylan <starylan@outlook.com>

* Update README.md

* Normalize chinese arithmetic operations (#947)

* 改变训练和推理时的mask策略,以修复当batch_size>1时,产生的复读现象

* 同步main分支代码,增加“保持随机”选项

* 在colab中运行colab_webui.ipynb发生的uvr5模型缺失问题 (#968)

在colab中使用git下载uvr5模型时报错:
fatal: destination path 'uvr5_weights' already exists and is not an empty directory.
通过在下载前将原本从本仓库下载的uvr5_weights文件夹删除可以解决问题。

* [ASR] 修复FasterWhisper遍历输入路径失败 (#956)

* remove glob

* rename

* reset mirror pos

* 回退mask策略;
回退pad策略;
在T2SBlock中添加padding_mask,以减少pad的影响;
开放repetition_penalty参数,让用户自行调整重复惩罚的强度;
增加parallel_infer参数,用于开启或关闭并行推理,关闭时与0307版本保持一致;
在webui中增加“保持随机”选项;
同步main分支代码。

* 删除无用注释

---------

Co-authored-by: Lion <drain.daters.0p@icloud.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: KamioRinn <snowsdream@live.com>
Co-authored-by: Pengoose <pengoose_dev@naver.com>
Co-authored-by: Yuan-Man <68322456+Yuan-ManX@users.noreply.github.com>
Co-authored-by: XXXXRT666 <157766680+XXXXRT666@users.noreply.github.com>
Co-authored-by: KamioRinn <63162909+KamioRinn@users.noreply.github.com>
Co-authored-by: Lion-Wu <130235128+Lion-Wu@users.noreply.github.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: SapphireLab <36986837+SapphireLab@users.noreply.github.com>
Co-authored-by: starylan <starylan@outlook.com>
Co-authored-by: shadow01a <141255649+shadow01a@users.noreply.github.com>
This commit is contained in:
ChasonJiang
2024-04-19 14:35:28 +08:00
committed by GitHub
parent 959269b5ae
commit 29f22115fb
25 changed files with 119437 additions and 114148 deletions

View File

@@ -37,7 +37,6 @@ default:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
custom:
device: cuda
@@ -46,7 +45,6 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
"""
@@ -66,6 +64,9 @@ def set_seed(seed:int):
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled = True
# 开启后会影响精度
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except:
pass
return seed
@@ -78,7 +79,6 @@ class TTS_Config:
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
"flash_attn_enabled": True
}
configs:dict = None
def __init__(self, configs: Union[dict, str]=None):
@@ -108,7 +108,6 @@ class TTS_Config:
self.device = self.configs.get("device", torch.device("cpu"))
self.is_half = self.configs.get("is_half", False)
self.flash_attn_enabled = self.configs.get("flash_attn_enabled", True)
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None)
@@ -141,7 +140,7 @@ class TTS_Config:
self.n_speakers:int = 300
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
# print(self)
def _load_configs(self, configs_path: str)->dict:
with open(configs_path, 'r') as f:
@@ -169,7 +168,6 @@ class TTS_Config:
"vits_weights_path" : self.vits_weights_path,
"bert_base_path" : self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
"flash_attn_enabled" : self.flash_attn_enabled
}
return self.config
@@ -289,8 +287,7 @@ class TTS:
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
config = dict_s1["config"]
self.configs.max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False,
flash_attn_enabled=self.configs.flash_attn_enabled)
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval()
@@ -435,8 +432,6 @@ class TTS:
device:torch.device=torch.device("cpu"),
precision:torch.dtype=torch.float32,
):
# 但是这里不能套,反而会负优化
# with torch.no_grad():
_data:list = []
index_and_len_list = []
for idx, item in enumerate(data):
@@ -484,8 +479,6 @@ class TTS:
norm_text_batch = []
bert_max_len = 0
phones_max_len = 0
# 但是这里也不能套,反而会负优化
# with torch.no_grad():
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
@@ -518,11 +511,11 @@ class TTS:
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device)
for idx, item in enumerate(all_bert_features_list):
all_bert_features_batch[idx, :, : item.shape[-1]] = item
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
# all_bert_features_batch = all_bert_features_list
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
# for idx, item in enumerate(all_bert_features_list):
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
@@ -539,7 +532,8 @@ class TTS:
"all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
"all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch
"norm_text": norm_text_batch,
"max_len": max_len,
}
_data.append(batch)
@@ -569,7 +563,6 @@ class TTS:
'''
self.stop_flag = True
# 使用装饰器
@torch.no_grad()
def run(self, inputs:dict):
"""
@@ -594,6 +587,8 @@ class TTS:
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility.
"parallel_infer": True, # bool. whether to use parallel inference.
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
}
returns:
tuple[int, np.ndarray]: sampling rate and audio data.
@@ -618,9 +613,17 @@ class TTS:
seed = inputs.get("seed", -1)
seed = -1 if seed in ["", None] else seed
actual_seed = set_seed(seed)
parallel_infer = inputs.get("parallel_infer", True)
repetition_penalty = inputs.get("repetition_penalty", 1.35)
if parallel_infer:
print(i18n("并行推理模式已开启"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer_with_flash_attn
else:
print(i18n("并行推理模式已关闭"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_0307
if return_fragment:
# split_bucket = False
print(i18n("分段返回模式已开启"))
if split_bucket:
split_bucket = False
@@ -740,6 +743,7 @@ class TTS:
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
all_bert_features:torch.LongTensor = item["all_bert_features"]
norm_text:str = item["norm_text"]
max_len = item["max_len"]
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text :
@@ -758,6 +762,8 @@ class TTS:
top_p=top_p,
temperature=temperature,
early_stop_num=self.configs.hz * self.configs.max_sec,
max_len=max_len,
repetition_penalty=repetition_penalty,
)
t4 = ttime()
t_34 += t4 - t3