忽略ffmpeg .gitignore

使t2s模型支持批量推理:   GPT_SoVITS/AR/models/t2s_model.py
	修复batch bug   GPT_SoVITS/AR/models/utils.py
    重构的tts infer   GPT_SoVITS/TTS_infer_pack/TTS.py
	文本预处理模块   GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
	new file   GPT_SoVITS/TTS_infer_pack/__init__.py
	文本拆分方法模块   GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
	tts infer配置文件   GPT_SoVITS/configs/tts_infer.yaml
	modified   GPT_SoVITS/feature_extractor/cnhubert.py
	modified   GPT_SoVITS/inference_gui.py
	重构的webui   GPT_SoVITS/inference_webui.py
	new file   GPT_SoVITS/inference_webui_old.py
This commit is contained in:
chasonjiang
2024-03-08 23:41:59 +08:00
parent e04b3f6d6b
commit 17832e5c4a
12 changed files with 1587 additions and 491 deletions

View File

@@ -115,17 +115,17 @@ def logits_to_probs(
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
if previous_tokens is not None:
previous_tokens = previous_tokens.squeeze()
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
@@ -133,9 +133,9 @@ def logits_to_probs(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))