support gpt-sovits v2
support gpt-sovits v2
This commit is contained in:
238
GPT_SoVITS/text/g2pw/onnx_api.py
Normal file
238
GPT_SoVITS/text/g2pw/onnx_api.py
Normal file
@@ -0,0 +1,238 @@
|
||||
# This code is modified from https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw
|
||||
# This code is modified from https://github.com/GitYCC/g2pW
|
||||
|
||||
import json
|
||||
import os
|
||||
import zipfile,requests
|
||||
from typing import Any
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime
|
||||
from opencc import OpenCC
|
||||
from transformers import AutoTokenizer
|
||||
from pypinyin import pinyin
|
||||
from pypinyin import Style
|
||||
|
||||
from .dataset import get_char_phoneme_labels
|
||||
from .dataset import get_phoneme_labels
|
||||
from .dataset import prepare_onnx_input
|
||||
from .utils import load_config
|
||||
from ..zh_normalization.char_convert import tranditional_to_simplified
|
||||
|
||||
model_version = '1.1'
|
||||
|
||||
|
||||
def predict(session, onnx_input: Dict[str, Any],
|
||||
labels: List[str]) -> Tuple[List[str], List[float]]:
|
||||
all_preds = []
|
||||
all_confidences = []
|
||||
probs = session.run([], {
|
||||
"input_ids": onnx_input['input_ids'],
|
||||
"token_type_ids": onnx_input['token_type_ids'],
|
||||
"attention_mask": onnx_input['attention_masks'],
|
||||
"phoneme_mask": onnx_input['phoneme_masks'],
|
||||
"char_ids": onnx_input['char_ids'],
|
||||
"position_ids": onnx_input['position_ids']
|
||||
})[0]
|
||||
|
||||
preds = np.argmax(probs, axis=1).tolist()
|
||||
max_probs = []
|
||||
for index, arr in zip(preds, probs.tolist()):
|
||||
max_probs.append(arr[index])
|
||||
all_preds += [labels[pred] for pred in preds]
|
||||
all_confidences += max_probs
|
||||
|
||||
return all_preds, all_confidences
|
||||
|
||||
|
||||
def download_and_decompress(model_dir: str='G2PWModel/'):
|
||||
if not os.path.exists(model_dir):
|
||||
parent_directory = os.path.dirname(model_dir)
|
||||
zip_dir = os.path.join(parent_directory,"G2PWModel_1.1.zip")
|
||||
extract_dir = os.path.join(parent_directory,"G2PWModel_1.1")
|
||||
extract_dir_new = os.path.join(parent_directory,"G2PWModel")
|
||||
print("Downloading g2pw model...")
|
||||
modelscope_url = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip"
|
||||
with requests.get(modelscope_url, stream=True) as r:
|
||||
r.raise_for_status()
|
||||
with open(zip_dir, 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=8192):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
|
||||
print("Extracting g2pw model...")
|
||||
with zipfile.ZipFile(zip_dir, "r") as zip_ref:
|
||||
zip_ref.extractall(parent_directory)
|
||||
|
||||
os.rename(extract_dir, extract_dir_new)
|
||||
|
||||
return model_dir
|
||||
|
||||
class G2PWOnnxConverter:
|
||||
def __init__(self,
|
||||
model_dir: str='G2PWModel/',
|
||||
style: str='bopomofo',
|
||||
model_source: str=None,
|
||||
enable_non_tradional_chinese: bool=False):
|
||||
uncompress_path = download_and_decompress(model_dir)
|
||||
|
||||
sess_options = onnxruntime.SessionOptions()
|
||||
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
|
||||
sess_options.intra_op_num_threads = 2
|
||||
self.session_g2pW = onnxruntime.InferenceSession(
|
||||
os.path.join(uncompress_path, 'g2pW.onnx'),
|
||||
sess_options=sess_options, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
||||
# sess_options=sess_options)
|
||||
self.config = load_config(
|
||||
config_path=os.path.join(uncompress_path, 'config.py'),
|
||||
use_default=True)
|
||||
|
||||
self.model_source = model_source if model_source else self.config.model_source
|
||||
self.enable_opencc = enable_non_tradional_chinese
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_source)
|
||||
|
||||
polyphonic_chars_path = os.path.join(uncompress_path,
|
||||
'POLYPHONIC_CHARS.txt')
|
||||
monophonic_chars_path = os.path.join(uncompress_path,
|
||||
'MONOPHONIC_CHARS.txt')
|
||||
self.polyphonic_chars = [
|
||||
line.split('\t')
|
||||
for line in open(polyphonic_chars_path, encoding='utf-8').read()
|
||||
.strip().split('\n')
|
||||
]
|
||||
self.non_polyphonic = {
|
||||
'一', '不', '和', '咋', '嗲', '剖', '差', '攢', '倒', '難', '奔', '勁', '拗',
|
||||
'肖', '瘙', '誒', '泊', '听', '噢'
|
||||
}
|
||||
self.non_monophonic = {'似', '攢'}
|
||||
self.monophonic_chars = [
|
||||
line.split('\t')
|
||||
for line in open(monophonic_chars_path, encoding='utf-8').read()
|
||||
.strip().split('\n')
|
||||
]
|
||||
self.labels, self.char2phonemes = get_char_phoneme_labels(
|
||||
polyphonic_chars=self.polyphonic_chars
|
||||
) if self.config.use_char_phoneme else get_phoneme_labels(
|
||||
polyphonic_chars=self.polyphonic_chars)
|
||||
|
||||
self.chars = sorted(list(self.char2phonemes.keys()))
|
||||
|
||||
self.polyphonic_chars_new = set(self.chars)
|
||||
for char in self.non_polyphonic:
|
||||
if char in self.polyphonic_chars_new:
|
||||
self.polyphonic_chars_new.remove(char)
|
||||
|
||||
self.monophonic_chars_dict = {
|
||||
char: phoneme
|
||||
for char, phoneme in self.monophonic_chars
|
||||
}
|
||||
for char in self.non_monophonic:
|
||||
if char in self.monophonic_chars_dict:
|
||||
self.monophonic_chars_dict.pop(char)
|
||||
|
||||
self.pos_tags = [
|
||||
'UNK', 'A', 'C', 'D', 'I', 'N', 'P', 'T', 'V', 'DE', 'SHI'
|
||||
]
|
||||
|
||||
with open(
|
||||
os.path.join(uncompress_path,
|
||||
'bopomofo_to_pinyin_wo_tune_dict.json'),
|
||||
'r',
|
||||
encoding='utf-8') as fr:
|
||||
self.bopomofo_convert_dict = json.load(fr)
|
||||
self.style_convert_func = {
|
||||
'bopomofo': lambda x: x,
|
||||
'pinyin': self._convert_bopomofo_to_pinyin,
|
||||
}[style]
|
||||
|
||||
with open(
|
||||
os.path.join(uncompress_path, 'char_bopomofo_dict.json'),
|
||||
'r',
|
||||
encoding='utf-8') as fr:
|
||||
self.char_bopomofo_dict = json.load(fr)
|
||||
|
||||
if self.enable_opencc:
|
||||
self.cc = OpenCC('s2tw')
|
||||
|
||||
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str:
|
||||
tone = bopomofo[-1]
|
||||
assert tone in '12345'
|
||||
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
|
||||
if component:
|
||||
return component + tone
|
||||
else:
|
||||
print(f'Warning: "{bopomofo}" cannot convert to pinyin')
|
||||
return None
|
||||
|
||||
def __call__(self, sentences: List[str]) -> List[List[str]]:
|
||||
if isinstance(sentences, str):
|
||||
sentences = [sentences]
|
||||
|
||||
if self.enable_opencc:
|
||||
translated_sentences = []
|
||||
for sent in sentences:
|
||||
translated_sent = self.cc.convert(sent)
|
||||
assert len(translated_sent) == len(sent)
|
||||
translated_sentences.append(translated_sent)
|
||||
sentences = translated_sentences
|
||||
|
||||
texts, query_ids, sent_ids, partial_results = self._prepare_data(
|
||||
sentences=sentences)
|
||||
if len(texts) == 0:
|
||||
# sentences no polyphonic words
|
||||
return partial_results
|
||||
|
||||
onnx_input = prepare_onnx_input(
|
||||
tokenizer=self.tokenizer,
|
||||
labels=self.labels,
|
||||
char2phonemes=self.char2phonemes,
|
||||
chars=self.chars,
|
||||
texts=texts,
|
||||
query_ids=query_ids,
|
||||
use_mask=self.config.use_mask,
|
||||
window_size=None)
|
||||
|
||||
preds, confidences = predict(
|
||||
session=self.session_g2pW,
|
||||
onnx_input=onnx_input,
|
||||
labels=self.labels)
|
||||
if self.config.use_char_phoneme:
|
||||
preds = [pred.split(' ')[1] for pred in preds]
|
||||
|
||||
results = partial_results
|
||||
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
|
||||
results[sent_id][query_id] = self.style_convert_func(pred)
|
||||
|
||||
return results
|
||||
|
||||
def _prepare_data(
|
||||
self, sentences: List[str]
|
||||
) -> Tuple[List[str], List[int], List[int], List[List[str]]]:
|
||||
texts, query_ids, sent_ids, partial_results = [], [], [], []
|
||||
for sent_id, sent in enumerate(sentences):
|
||||
# pypinyin works well for Simplified Chinese than Traditional Chinese
|
||||
sent_s = tranditional_to_simplified(sent)
|
||||
pypinyin_result = pinyin(
|
||||
sent_s, neutral_tone_with_five=True, style=Style.TONE3)
|
||||
partial_result = [None] * len(sent)
|
||||
for i, char in enumerate(sent):
|
||||
if char in self.polyphonic_chars_new:
|
||||
texts.append(sent)
|
||||
query_ids.append(i)
|
||||
sent_ids.append(sent_id)
|
||||
elif char in self.monophonic_chars_dict:
|
||||
partial_result[i] = self.style_convert_func(
|
||||
self.monophonic_chars_dict[char])
|
||||
elif char in self.char_bopomofo_dict:
|
||||
partial_result[i] = pypinyin_result[i][0]
|
||||
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
|
||||
else:
|
||||
partial_result[i] = pypinyin_result[i][0]
|
||||
|
||||
partial_results.append(partial_result)
|
||||
return texts, query_ids, sent_ids, partial_results
|
||||
Reference in New Issue
Block a user