more code refactor
This commit is contained in:
@@ -5,46 +5,74 @@ from torch import nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
from module.attentions import MultiHeadAttention
|
||||
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer = 2
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer=2,
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size,out_channels, 1)
|
||||
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
||||
if(ge==None):ge=0
|
||||
if ge == None:
|
||||
ge = 0
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
if test != None:
|
||||
if test == 0:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ssl_enc
|
||||
+ ge
|
||||
)
|
||||
elif test == 1:
|
||||
x = ssl_enc + ge
|
||||
elif test ==2:
|
||||
x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
|
||||
elif test == 2:
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ge
|
||||
)
|
||||
else:
|
||||
raise ValueError("test should be 0,1,2")
|
||||
else:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ssl_enc
|
||||
+ ge
|
||||
)
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class SpeakerEncoder(torch.nn.Module):
|
||||
def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
|
||||
def __init__(
|
||||
self,
|
||||
mel_n_channels=80,
|
||||
model_num_layers=2,
|
||||
model_hidden_size=256,
|
||||
model_embedding_size=256,
|
||||
):
|
||||
super(SpeakerEncoder, self).__init__()
|
||||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
||||
self.lstm = nn.LSTM(
|
||||
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
|
||||
)
|
||||
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
@@ -56,13 +84,15 @@ class SpeakerEncoder(torch.nn.Module):
|
||||
|
||||
|
||||
class MELEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
@@ -81,80 +111,82 @@ class MELEncoder(nn.Module):
|
||||
x = self.enc(x)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
|
||||
acts = fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
n_channels_tensor)
|
||||
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts)
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = x + res_acts
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
content_enc = torch.randn(3,192,100)
|
||||
content_mask = torch.ones(3,1,100)
|
||||
ref_mel = torch.randn(3,128,30)
|
||||
ref_mask = torch.ones(3,1,30)
|
||||
if __name__ == "__main__":
|
||||
content_enc = torch.randn(3, 192, 100)
|
||||
content_mask = torch.ones(3, 1, 100)
|
||||
ref_mel = torch.randn(3, 128, 30)
|
||||
ref_mask = torch.ones(3, 1, 30)
|
||||
model = MRTE()
|
||||
out = model(content_enc,content_mask,ref_mel,ref_mask)
|
||||
print(out.shape)
|
||||
out = model(content_enc, content_mask, ref_mel, ref_mask)
|
||||
print(out.shape)
|
||||
|
||||
Reference in New Issue
Block a user