more code refactor
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import time,logging
|
||||
import time, logging
|
||||
import os
|
||||
import random,traceback
|
||||
import random, traceback
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
@@ -16,41 +16,44 @@ import torch
|
||||
import requests
|
||||
from scipy.io import wavfile
|
||||
from io import BytesIO
|
||||
|
||||
# from config import exp_dir
|
||||
from my_utils import load_audio
|
||||
|
||||
|
||||
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir=hparams.exp_dir
|
||||
self.path2="%s/2-name2text.txt"%exp_dir
|
||||
self.path4="%s/4-cnhubert"%exp_dir
|
||||
self.path5="%s/5-wav32k"%exp_dir
|
||||
exp_dir = hparams.exp_dir
|
||||
self.path2 = "%s/2-name2text.txt" % exp_dir
|
||||
self.path4 = "%s/4-cnhubert" % exp_dir
|
||||
self.path5 = "%s/5-wav32k" % exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4=set([name[:-3]for name in list(os.listdir(self.path4))])#去除.pt后缀
|
||||
names5=set(os.listdir(self.path5))
|
||||
self.phoneme_data={}
|
||||
with open(self.path2,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
||||
names5 = set(os.listdir(self.path5))
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp=line.split("\t")
|
||||
if(len(tmp)!=4):continue
|
||||
self.phoneme_data[tmp[0]]=[tmp[1]]
|
||||
tmp = line.split("\t")
|
||||
if len(tmp) != 4:
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text=list(set(self.phoneme_data)&names4&names5)
|
||||
tmp=self.audiopaths_sid_text
|
||||
leng=len(tmp)
|
||||
min_num=100
|
||||
if(leng<min_num):
|
||||
self.audiopaths_sid_text=[]
|
||||
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
||||
tmp = self.audiopaths_sid_text
|
||||
leng = len(tmp)
|
||||
min_num = 100
|
||||
if leng < min_num:
|
||||
self.audiopaths_sid_text = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
@@ -69,20 +72,20 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme = phoneme.split(" ")
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
skipped_phone += 1
|
||||
continue
|
||||
size=os.path.getsize("%s/%s"%(self.path5,audiopath))
|
||||
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
if (54 > duration > 0.6 or self.val):
|
||||
if 54 > duration > 0.6 or self.val:
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
@@ -90,7 +93,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
continue
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new)>1#至少能凑够batch size,这里todo
|
||||
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
@@ -98,30 +101,41 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, wav = self.get_audio("%s/%s"%(self.path5,audiopath))
|
||||
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt"%(self.path4,audiopath),map_location="cpu")
|
||||
if(ssl.shape[-1]!=spec.shape[-1]):
|
||||
typee=ssl.dtype
|
||||
ssl=F.pad(ssl.float(),(0,1),mode="replicate").to(typee)
|
||||
ssl.requires_grad=False
|
||||
ssl = torch.load(
|
||||
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu"
|
||||
)
|
||||
if ssl.shape[-1] != spec.shape[-1]:
|
||||
typee = ssl.dtype
|
||||
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
||||
ssl.requires_grad = False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
spec = torch.zeros(1025, 100)
|
||||
wav = torch.zeros(1, 100*self.hop_length)
|
||||
ssl=torch.zeros(1,768,100)
|
||||
text=text[-1:]
|
||||
wav = torch.zeros(1, 100 * self.hop_length)
|
||||
ssl = torch.zeros(1, 768, 100)
|
||||
text = text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
|
||||
return (ssl, spec, wav, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
audio_array = load_audio(
|
||||
filename, self.sampling_rate
|
||||
) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio = torch.FloatTensor(audio_array) # /32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,self.sampling_rate, self.hop_length, self.win_length,center=False)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec, audio_norm
|
||||
|
||||
@@ -131,39 +145,51 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
|
||||
def random_slice(self, ssl, wav, mel):
|
||||
assert abs(ssl.shape[-1]- wav.shape[-1]//self.hop_length) < 3, ("first", ssl.shape, wav.shape)
|
||||
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
|
||||
"first",
|
||||
ssl.shape,
|
||||
wav.shape,
|
||||
)
|
||||
|
||||
len_mel = mel.shape[1]
|
||||
if self.val:
|
||||
reference_mel = mel[:, :len_mel//3]
|
||||
reference_mel = mel[:, : len_mel // 3]
|
||||
return reference_mel, ssl, wav, mel
|
||||
dir = random.randint(0, 1)
|
||||
sep_point = random.randint(int(len_mel//3), int(len_mel//3*2))
|
||||
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))
|
||||
|
||||
if dir == 0:
|
||||
reference_mel = mel[:, :sep_point]
|
||||
ssl = ssl[:, :, sep_point:]
|
||||
wav2 = wav[:, sep_point*self.hop_length:]
|
||||
wav2 = wav[:, sep_point * self.hop_length :]
|
||||
mel = mel[:, sep_point:]
|
||||
else:
|
||||
reference_mel = mel[:, sep_point:]
|
||||
ssl = ssl[:, :, :sep_point]
|
||||
wav2 = wav[:, :sep_point*self.hop_length]
|
||||
wav2 = wav[:, : sep_point * self.hop_length]
|
||||
mel = mel[:, :sep_point]
|
||||
|
||||
assert abs(ssl.shape[-1]- wav2.shape[-1]//self.hop_length) < 3, (ssl.shape, wav.shape,wav2.shape, mel.shape, sep_point,self.hop_length, sep_point*self.hop_length, dir)
|
||||
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
|
||||
ssl.shape,
|
||||
wav.shape,
|
||||
wav2.shape,
|
||||
mel.shape,
|
||||
sep_point,
|
||||
self.hop_length,
|
||||
sep_point * self.hop_length,
|
||||
dir,
|
||||
)
|
||||
return reference_mel, ssl, wav2, mel
|
||||
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
class TextAudioSpeakerCollate:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
@@ -176,8 +202,8 @@ class TextAudioSpeakerCollate():
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
||||
)
|
||||
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
@@ -194,7 +220,7 @@ class TextAudioSpeakerCollate():
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
wav_padded.zero_()
|
||||
@@ -205,23 +231,31 @@ class TextAudioSpeakerCollate():
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_padded[i, :, : spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wav = row[2]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
wav_padded[i, :, : wav.size(1)] = wav
|
||||
wav_lengths[i] = wav.size(1)
|
||||
|
||||
text = row[3]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_padded[i, : text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
|
||||
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
|
||||
return (
|
||||
ssl_padded,
|
||||
ssl_lengths,
|
||||
spec_padded,
|
||||
spec_lengths,
|
||||
wav_padded,
|
||||
wav_lengths,
|
||||
text_padded,
|
||||
text_lengths,
|
||||
)
|
||||
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
@@ -234,7 +268,15 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
||||
def __init__(
|
||||
self,
|
||||
dataset,
|
||||
batch_size,
|
||||
boundaries,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=True,
|
||||
):
|
||||
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||||
self.lengths = dataset.lengths
|
||||
# print(233333333333333,self.lengths,dir(dataset))
|
||||
@@ -254,7 +296,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
buckets[idx_bucket].append(i)
|
||||
|
||||
for i in range(len(buckets) - 1, 0, -1):
|
||||
# for i in range(len(buckets) - 1, -1, -1):
|
||||
# for i in range(len(buckets) - 1, -1, -1):
|
||||
if len(buckets[i]) == 0:
|
||||
buckets.pop(i)
|
||||
self.boundaries.pop(i + 1)
|
||||
@@ -263,7 +305,9 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
for i in range(len(buckets)):
|
||||
len_bucket = len(buckets[i])
|
||||
total_batch_size = self.num_replicas * self.batch_size
|
||||
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
||||
rem = (
|
||||
total_batch_size - (len_bucket % total_batch_size)
|
||||
) % total_batch_size
|
||||
num_samples_per_bucket.append(len_bucket + rem)
|
||||
return buckets, num_samples_per_bucket
|
||||
|
||||
@@ -289,14 +333,23 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
|
||||
# add extra samples to make it evenly divisible
|
||||
rem = num_samples_bucket - len_bucket
|
||||
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
||||
ids_bucket = (
|
||||
ids_bucket
|
||||
+ ids_bucket * (rem // len_bucket)
|
||||
+ ids_bucket[: (rem % len_bucket)]
|
||||
)
|
||||
|
||||
# subsample
|
||||
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
||||
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
||||
|
||||
# batching
|
||||
for j in range(len(ids_bucket) // self.batch_size):
|
||||
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
||||
batch = [
|
||||
bucket[idx]
|
||||
for idx in ids_bucket[
|
||||
j * self.batch_size : (j + 1) * self.batch_size
|
||||
]
|
||||
]
|
||||
batches.append(batch)
|
||||
|
||||
if self.shuffle:
|
||||
|
||||
Reference in New Issue
Block a user