more code refactor

This commit is contained in:
Blaise
2024-01-16 17:14:18 +01:00
parent 0d92575115
commit 0d3d47f3c3
44 changed files with 4516 additions and 2623 deletions

View File

@@ -7,10 +7,11 @@ from torch import nn
class TokenEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
vocab_size: int,
dropout: float=0.0, ):
self,
embedding_dim: int,
vocab_size: int,
dropout: float = 0.0,
):
super().__init__()
self.vocab_size = vocab_size
@@ -24,7 +25,7 @@ class TokenEmbedding(nn.Module):
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index:index + 1]
return self.word_embeddings.weight[index : index + 1]
def forward(self, x: torch.Tensor):
x = self.word_embeddings(x)
@@ -34,11 +35,12 @@ class TokenEmbedding(nn.Module):
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float=0.0,
scale: bool=False,
alpha: bool=False, ):
self,
embedding_dim: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
@@ -59,13 +61,14 @@ class SinePositionalEmbedding(nn.Module):
pe = torch.zeros(x.size(1), self.embedding_dim)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(
0, x.size(1), dtype=torch.float32).unsqueeze(1)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
-(math.log(10000.0) / self.embedding_dim))
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.embedding_dim)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
@@ -74,5 +77,5 @@ class SinePositionalEmbedding(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * self.pe[:, :x.size(1)]
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(output)